一元二次方程因式分解十字相乘法

如题所述

十字相乘法解一元二次方程:十字相乘法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。
需注意:十字相乘法本质是一种简化方程的形式,它能把二次三项式分解因式,但是要务必注意各项系数的符号。
十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法的用处:用十字相乘法来分解因式。用十字相乘法来解一元二次方程。
十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。十字相乘法的缺陷:有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。十字相乘法只适用于二次三项式类型的题目。十字相乘法比较难学。
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-09-22
二次三项式,十字相乘,因式分解,
窍门就是,结合分组分解法一同使用,
正如 x" + (a + b)x + ab = ( x + a )( x + b )
中间的一次项 mx = (a+b)x ,
首先一分为二,拆开变成 ax + bx ,
接下来把四个项,分两组提公因式,做起来就轻松多了;
Q 关键是一次项怎样一分为二,就由常数项的正负来决定,
一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式;
Q 如果常数项是正数,
一次项就是拆开两个绝对值比原来小的两个项;
就连完全平方的式子,这样做起来也会觉得更加可靠。
例如
x" + 10x + 25
= x" + 5x + 5x + 25
= x( x + 5 ) + 5( x + 5 )
= ( x + 5 )"
常数项都是 +25,一次项就都是分开 10=5+5,
x" - 10x + 25
= x" - 5x - 5x + 25
= x( x - 5 ) - 5( x - 5 )
= ( x - 5 )"
类似的常数项为正数
x" + 10x + 24
= x" + 4x + 6x + 24
= x( x + 4 ) + 6( x + 4 )
= ( x + 4 )( x + 6 )
常数项都是 +24,一次项就都是分开 10=4+6,
x" - 10x + 24
= x" - 4x - 6x + 24
= x( x - 4 ) - 6( x - 4 )
= ( x - 4 )( x - 6 )
Q 如果常数项是负数,
一次项系数就是分开两个项的相差数;
x" + 10x - 24
= x" + 12x - 2x - 24
= x( x + 12 ) - 2( x + 12 )
= ( x - 2 )( x + 12 )
常数项都是 -24,一次项就都是分开 10=12-2,
x" - 10x - 24
= x" - 12x + 2x - 24
= x( x - 12 ) + 2( x - 12 )
= ( x + 2 )( x - 12 )
看到了吧,
一次项和常数项,绝对值都是 10x 和 24,
分解因式却有 4 种结果,会不会看得晕头转向呢?
怎么办?只要这样一步一步地写出来,就肯定不会出错了。
x" ± 5x ± 6
x" ± 10x ± 24
x" ± 15x ± 54
x" ± 20x ± 96
x" ± 25x ± 150
都是这样有 4 种结果,
使用这个分解因式的方法,
你自己也试一试吧。
只要熟悉这个方法,就连二次项系数不是 1 也同样方便,
例如
4x" - 31x - 45
对着 31,我们恐怕不知道怎样分开两项
可是看到 -45,我们都会想到 4X9=36,5X9=45,
那么
= 4x" - 36x + 5x - 45
= 4x( x - 9 ) + 5( x - 9 )
= ( x - 9 )( 4x + 5 )
或者
= 4x" + 5x - 36x - 45
= x( 4x + 5 ) - 9( 4x + 5 )
= ( x - 9 )( 4x + 5 )

一元二次方程因式分解十字相乘法
十字相乘法解一元二次方程:十字相乘法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。需注意:十字相乘法本质是一种简化方程的形式,它能把二次三项式分解因式,但是要务必注意各项系数的符号。十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常...

一元二次方程因式分解法十字相乘
十字相乘法的方法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1.a2,把常数项c分解成两个因数c1,c2的积c1乘c2,并使a1c2+a2c1正好是一次项b.那么可以直接...

一元二次方程因式分解怎么分解?
一元二次方程的因式分解可以用十字相乘法。使用该方法要先将方程化简为一般式。举个例子,x^2-3x+2=0首先,我们看看第一项,是x^2,二次项系数为1,则先把二次项系数分解成两个因数相乘的形式:1×1。然后再看常数项是2 ,把常数项分解成两个因数相乘的形式:1×2或-1×(-2)。我们再看...

一元二次方程因式分解法十字相乘
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因...

一元二次方程怎么解啊,什么是十字相乘法
十字相乘法是因式分解的方法。一元二次方程左边是一元二次多项式,用十字相乘法因式分解,可以得到两个一次因式相乘,两个一次因式分别组成一个一元一次方程,然后求出方程的两个根。

十字相乘法解一元二次方程
十字相乘法解一元二次方程要把二次项拆成两个因式的积,常数项拆成两个常数的积,然后十字图案交叉相乘,若合并后的结果为一次项,说明分解正确,再把每一行写在一个括号里相乘即可。若合并后的结果不是一次项,需要重新调整尝试。十字交叉法因式分解:先将二次项系数拆成两个乘积的形式,再将常数项...

如何用因式分解法解一元二次方程
步骤:将方程右边化为0;将方程左边分解为两个一次式的积;令这两个一次式分别为0,得到两个一元一次方程;解这两个一元一次方程,它们的解就是原方程的解。提取公因式法:am+bm+cm=m(a+b+c).公式法:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)。十字相乘法:1ax2+(a+b)x+ab=(x+a...

十字相乘法因式分解解一元二次方程
首先,十字相乘法的原理是将一元二次方程ax² + bx + c = 0形式的方程分解为两个一次因式的乘积形式。具体步骤为:寻找两个数m和n,使得m * n = a * c,同时m + n = b。然后将原方程拆分成(x + m)(x + n) = 0的形式。例如:方程x² - 5x + 6 = 0。我们需要...

“十字相乘法”用于一元二次方程的求解,是因式分解的方法之一,熟练掌握...
“十字相乘法”用于一元二次方程的求解,是因式分解的方法之一,熟练掌握能成倍提升计算速度!一、基本原理 二、使用方法 运用上述等式的逆运算,在仅仅已知等号右边的内容把左边的式子凑出来。即:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。这句话什么意思,用文字...

一元二次方程,因式分解法,怎么用十字相乘
x前的系数是4,可以分成(2x+p)(2x+q),(4x+p)(x+q)只要是括号里x前的系数相乘等于x^2的系数就对了,以此类推 十字相乘是个比较系统的一种因式分解类型 做题步骤一般分为 通过常数项的因数配出p,q 注意x^2+(p+q)x+pq的正负号,pq相乘为正,相加为负那么p、q都是负数 pq相乘为正,...

相似回答