求解 ∫sin^3xcos^2xdx

如题所述

温馨提示:内容为网友见解,仅供参考
无其他回答

求解∫sin^3xcos^2xdx
2012-06-22 ∫sin^3xcos^2xdx 9 2017-04-05 ∫sin^3cos^2xdx = 3 2017-02-25 求cos^2x\/sin^3x的不定积分。 20 2015-11-26 ∫sin^2xcos^2xdx 9 2015-12-26 求解简单高数不定积分∫sin^2x\/cos^3xdx 9 2015-01-10 求不定积分cos^3Xsin^2Xdx 1 2017-01-27 跪求大神解答高数∫s...

求不定积分∫sinx^3xcox^2xdx的求解过程
∫sin^3x cos^2xdx= - ∫(1-cos^2x)cox^2xdcosx = ∫(cos^4x-cos^2x)dcosx =(1\/5)cos^5x - (1\/3)cos^3x

问高数求导 ∫sin^3xcos^2xdx
其实积分是要求全体原函数,如果被积函数为f(x),原函数为F(x),则F(x)的导数=f(x)。现在积分是要sin^3xcos^2x的原函数,即求F(x),使得F(x)的导数=sin^3xcos^2x,再对积分求导,实际上就是求F(x)的导数,就等于sin^3xcos^2x ...

问高数求导 ∫sin^3xcos^2xdx
∫sin^3xcos^2xdx =-∫sin^2xcos^2xdcosx =-∫(1-cos^2x)*cos^2xdcosx =-∫(cos^2x-cos^4x)dcosx =(1\/5)*cos...

cos^2x求不定积分
回答:∫cos^2xdx =∫(1+cos2x)dx\/2 =∫(1+cos2x)d2x\/4 =(1\/4)∫[d2x+cos2xd2x] =(1\/4){2x+sin2x+C1} =x\/2+(sin2x)\/4+C

∫sin^3cos^2xdx =
如图

求不定积分∫sin^3xdx详细解答过程
∫sin^3xdx 解:∫sin^3xdx=∫sinxsin^2xdx=∫(sinx(1-cos2x)\/2)dx=1\/2∫sinxdx-1\/2∫cos2x\/dx=-cosx\/2-sin2x\/4+C

如何求∫xcos^2xdx?
∫xcos^2xdx 的积分可以使用换元积分法和分部积分法进行求解。方法一:换元积分法 令 u = xcosx, du = (cosx - xsinx) dx,那么:∫xcos^2xdx = ∫u^2\/(u^2 + sin^2x) du = ∫(u^2 + sin^2x - sin^2x)\/(u^2 + sin^2x) du = ∫(1 - sin^2x\/(u^2 + sin^2x)) ...

不定积分∫sinxcos^2xdx分部积分法
∫sinxcos^2xdx=∫sinxcosxdsinx=1\/2∫cosxdsin^2x =1\/2cosxsin^2x+1\/2∫sin^3x=1\/2cosxsin^2x+1\/2∫sinx(1-cos^2x)dx =1\/2cosxsin^2x-1\/2cosx-1\/2∫sinxcos^2xdx 故:∫sinxcos^2xdx=2\/3[1\/2cosxsin^2x-1\/2cosx]+C ...

不定积分∫sinxcos^2xdx分部积分法
∫sinxcos^2xdx=∫sinxcosxdsinx=1\/2∫cosxdsin^2x =1\/2cosxsin^2x+1\/2∫sin^3x=1\/2cosxsin^2x+1\/2∫sinx(1-cos^2x)dx =1\/2cosxsin^2x-1\/2cosx-1\/2∫sinxcos^2xdx 故:∫sinxcos^2xdx=2\/3[1\/2cosxsin^2x-1\/2cosx]+C ...

相似回答