以前有人回答过,说应该是4/3≤x≤4,4/3≤y≤4,4/3≤z≤4 题目真的错了吗?
已知x,y,z属于R,且x+y+z=8,x^2+y^2+z^2=24,求x,y,z的取值范围
4\/3≤x≤4,4\/3≤y≤4,4\/3≤z≤4 证明过程如下:y+z=8-x,y^2+z^2=24-x^2;由不等式:(y+z)^2≤2(y^2+z^2)将以上两式待入得:(8-x)^2≤2(24-x^2)化为:3x^2-16x+16≤0,解得4\/3≤x≤4。同理可得,4\/3≤y≤4,4\/3≤z≤4 ...
已知x,y,z为实数,且x+y+z=8,x^2+y^2+z^2=24,求证:4\/3<=x<=3.
x+y+z=8,z=8-x-y代入x²+y²+z²=24 x²+y²+(8-x-y)²=24 2y²-2(8-x)y+(8-x)²+x²-24=0 即y²+(x-8)y+(x²-8x+20)=0 因x,y,z为实数 所以关于y的二次方程有实数解 则判别式=(x-8)²-4(...
已知x+y+z=3,x^2+y^2+z^2=29,x^3+y^3+z^3=45,求xyz的值.
所以xy+xz+yz=[3*3-29]\/2=-10 所以 3xyz=x^3+y^3+z^3-(x+y+z)(x^2+y^2+z^2-xy-yz-xz)=45-3*[29-(-10)]=-72 xyz=-24
已知x+y+z=3,x^2+y^2+z^2=29,x^3+y^3+z^3=45,求xyz的值
根据x+y+z=3,两边平方,有:x^2+y^2+z^2+2xy+2yz+2zx=9.再有:x^2+y^2+z^2=29,所以:xy+yz+yz=-10.所以代入上面的公式,有:45-3xyz=3*[3*3-3*(-10)]所以xyz=-24.
已知:x,y,z满足x+y+z=1,x^2+y^2+z^2=2,x^3+y^3+z^3=3,求x^
则a[n+3]=(x+y+z)a[n+2]-xya[n+1]-yza[n+1]-zxa[n+1]+xyza[n]a[4]=a[3]-(xy+yz+zx)a[2]+xyza[1]=>a[4]=3-2(xy+yz+zx)+xyz 由于2(xy+yz+zx)=(x+y+z)^2-(x^2+y^2+z^2)=-1 xyz=[(x+y+z)^3-3(x+y+z)(x^2+y^2+z^2)+2(x^3+y^3...
已知x,y,z为实数.(1)试比较xy+yz+zx与x^2+y^2+z^2的大小...
右:≥4xy+4xz+4zy = 2(x^2+y^2+z^2)+2(xy+yz+zx)=4(xy+yz+zx)=2(x^2+y^2+z^2)+2×75 =4×75 则(x^2+y^2+z^2)≥75 要使左边取得最小,则要x=y=z时才行,故解得x=y=z=5 (3)因为x,y,z为正实数,则x+y+z≥3倍的(xyz)开三次方 当取得最小值时,...
已知x+y+z=1,x^2+y^2+z^2=2,x^3+y^3+z^3=3,求x^4+y^4+z^4,
因为(x^3+y^3+z^3)*(x+y+z)=x^4+y^4+z^4+xy*(x^2+y^2)+xz(x^2+z^2)+yz(y^2+z^2)=x^4+y^4+z^4+xy(1-z^2)+xz(1-y^2)+yz(1-x^2)=x^4+y^4+z^4+xy+xz+yz-xyz(x+y+z)=3所以x^4+y^4+z^4=3-(xy+xz+yz)+xyz因为x^2+y^2+z^2 =2...
证明:若x,y,z∈R,且x^2+y^2+z^2=2,则x+y+z≤xyz+2
f'(y)=1-xz+2hy=0 f'(z)=1-xy+2hz=0 还有x^2+y^2+z^2=2 对于前3式,直接消去参数h得到 (y-x)[(y+x)z-1]=0 (z-x)[(z+x)y-1]=0 (y-z)[(y+z)x-1]=0 所以极值点必然在:i)x=y=z=+\/-sqrt(2\/3),达到7sqrt(6)\/9~=1.905 ii)x=y,(z+x)\/y-1=0,...
已知x+y+z=9,x2+y2+z2=29 x3+y3+z3=45,求xyz的值
所以xy+yz+zx=(3^2-29)\/2=-10 (x+y+z)(x^2+y^2+z^2)=x^3+y^3+z^3+xy^2+xz^2+yx^2+yz^2+zx^2+zy^2 =x^3+y^3+z^3+xy(x+y)+yz(y+z)+zx(z+x)=x^3+y^3+z^3+xy(3-z)+yz(3-x)+zx(3-y)=x^3+y^3+z^3+3(xy+yz+zx)-3xyz 所以xyz=(45+3...
已知x,y,z∈R+,且x+y+z=3,求证:x^2\/(y^2+z^2+yz)+y^2\/(x^2+z^2+zx...
所以,x^2\/(y^2+z^2+yz)+y^2\/(z^2+x^2+zx)+z^2\/(x^2+y^2+xy)≥2[x^2\/(y^2+z^2)+y^2\/(z^2+x^2)+z^2\/(x^2+y^2)]\/3 分析可知x^2\/(y^2+z^2)=(x^2+y^2+z^2)\/(y^2+z^2)-1,同理y^2\/(z^2+x^2)=(x^2+y^2+z^2)\/(z^2+x^2)-1,...