在三棱锥P-ABC中PA=PB=AB=2,BC=3,角ABC=90平面PAB垂直平面ABC,DE分 ...
在PBC内作DF垂直PB于F,连结FE,则角DFE为A-PB-E的二面角,DF=根号3\/2,DE=3\/2,角DFE=根号3,角DFE=60°
已知三棱锥P-ABC中,PB垂直于平面ABC,PB=AB=BC=2,角ABC=120度,M、E...
因为pa垂直面ABC 所以pa垂直BC 且pa=ab 故面pab为等腰直角三角形。得MA=MB 从M点做垂直于AB的线于H点 则面BMH垂直于面ABC 连接NH 因MN属于面MNH AB属于面ABC 所以MN垂直于AB
如图,在三棱锥P-ABC中,PA=PB=AB=BC,∠PBC=90°,D为AC的中点,AB⊥PD...
平面ABC,∴平面PAB⊥平面ABC.(Ⅱ)解:由(Ⅰ)知OB、OD、OP两两垂直,以O为坐标原点,以OB为x轴,OD为y轴,OP为z轴,建立空间直角坐标系,设OB=1,则B(1,0,0),P(0,0,3),D(0,1,0),C(1,2,0),则BD=(?1,1,0),...
如图,在三棱锥P-ABC中,PA=PB=2,AC=BC=1,∠ACB=∠PAC=∠PBC=90°,D为A...
解:(Ⅰ)证明:在△ABC中,∵D为AB的中点,且AC=BC,∴AB⊥CD,同理,在△PAB中有AB⊥AD,而AD∩CD=D,∴AB⊥平面PDC,∴平面PDC⊥平面ABC.(5分)(Ⅱ)延长CD,过点P作PF⊥CD于F,则PF⊥平面ABC.即PF的长度就为点P到平面ABC的距离.由已知,可得在△PDC中,PD=62,DC=22,...
如图,在三棱锥P﹣ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平 ...
∵PA 平面PAB,∴PA⊥BC;又∵PA⊥PB,PB∩BC=B∴PA⊥平面PBC. (2)解:作PO⊥AB于点O,OM⊥AC于点M,连接PM, ∵平面PAB⊥平面ABC,∴PO⊥平面ABC,由三垂线定理得PM⊥AC,∴∠PMO是二面角P﹣AC﹣B的平面角.设 ,∵PA⊥PB,∴ ∵OM⊥AM,∠MAO=30°,∴ ,∴ .
...=pc,角acb=90°,ac=cb=2,求证平面pab垂直平面abc当角pcb=60°时...
因为:pa = pb ,所以点 d 为 ab 中点。又由 c 点向 ab 线作垂线,ac = bc ,故交与点d,因为角acb=90度,ac = bc ,故ad=cd=db。三角形 pdb ,三角形pdc中,pd为共边,db=cd,pb=pc ,故他们是相同三角形,角 pdb=90度,那么角 pdc=90度。即pd垂直cd,由上得 pd垂直ab ...
如图,在三棱锥P-ABC中,已知PA⊥AB,PC⊥BC,AC=PC= ,PA= ,PB= ,D、F...
(1)证明:如图①,取AB、BC的中点E、G,连接DE、EF、DG、FG,则FG∥AB,EF∥BC,DE∥PA, ∵PA⊥AB,∴DE⊥AB,由勾股定理可得AB=2,BC=1,又AC= ,∴AC 2 =AB 2 +BC 2 ,∴AB⊥BC,∴EF⊥AB,∴AB⊥平面DEF,∴DF⊥AB,同理DF⊥BC,又AB、BC相交于B点,∴直线DF⊥平面AB...
如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥BC,AB=BC=PA=PC,点O...
4分)(Ⅱ)解:连接PO,OB∵PA=PC,∴PO⊥AC∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC∴PO⊥平面ABC∴∠PBO是直线PB与平面ABC所成角设AB=BC=PA=PC=1,则∵AB⊥BC,∴0B=0C=22PO=1-(22)2=22∴tan∠PBO=POOB=1,∴∠PBO=45°∴PB与平面ABC所成角为45°---(6分)
如图,在三棱锥P-ABC中,BC⊥平面PAB.已知PA=AB,D,E分别为PB,BC的中点...
(1)∵BC⊥平面PAB,AD?平面PAB,∴BC⊥AD.∵PA=AB,D是PB的中点,∴AD⊥PB∵PB、BC是平面PBC内的相交直线,∴AD平面PBC;(2)连结DC,交PE于点G,连结FG、DE∵AD∥平面PEF,AD?平面ADC,平面ADC∩平面PEF=FG,∴AD∥FG.∵D、E分别是PB、BC的中点,∴DE为△BPC的中位线,因此,...
如图,在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面A...
平面PAB,∴PA⊥BC.又∵PA⊥PB,∴PA⊥平面PBC.(Ⅱ)作PO⊥AB于点O,OM⊥AC于点M,连接PM.∵平面PAB⊥平面ABC,∴PO⊥平面ABC,根据三垂线定理得PM⊥AC,∴∠PMO是二面角P-AC-B的平面角.设 PA=PB= 6 ,∵PA⊥PB,∴ AB=2 3 ,PO=BO=AO= 3 .∵OM⊥AM,...