有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有

有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒不放球,有多少种放法?

(1)256(2)144(3)144(4)84


试题分析:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有: 种.
(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有 种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法: 种.
(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法.
(4)先从四个盒子中任意拿走两个有 种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有 种放法;第二类:有 种放法.因此共有 种.由分步乘法计数原理得“恰有两个盒子不放球”的放法有: 种.
点评:两个计数原理是解决这类问题的基础,而排列组合的准确灵活应用是解决这类问题的关键,要分清是排列问题还是组合问题,是分类还是分步,要坚持特殊元素优先和特殊位置优先的原则.
温馨提示:内容为网友见解,仅供参考
无其他回答

有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法...
(1)一个球一个球地放到盒子里去,每只球都有4种独立的放法,由分步乘法计数原理,放法共有:44=256(种).…(3分)(2)为保证“恰有一个盒内不放球”,先选一个盒子,有C14种方法;再将4个球分成2,1,1三组,有C24种分法,然后全排列,由分步乘法计数原理,共有C14C24A33=144种...

...现在要把球全部放入盒内.(1)共有多少种放法?(用数字作答)(2)恰...
(1)每个球都有4种方法,故有4×4×4×4=256种(2)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有C 4 2 A 4 3 =144种不同的放法.(3)四个球分...

...现在要把球全部放入盒内.(1)共有多少种放法?(用数字作答)(2)恰...
(1)每个球都有4种方法,故有4×4×4×4=256种 (2)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有C42A43=144种不同的放法. (3)四个球分为两组有两种...

有4个不同的球,四个不同的盒子。把球全部放入盒内,恰有一个盒子不放球...
解析:(1)恰有一个盒子不放球,那么一盒有2个球,另外两盒各1个球 所以共有:C(4,2)×A(4,3)=6×24=144种不同的放法。(注:先将球按2、1、1分组,再排列)(2)恰有一个盒子内有2个球,那么其他3个盒子中,有两盒各1个球,另1盒没有球,所以此题同第(1)小题解法相同,此...

4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球...
与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C 种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C C A 种方法;第二类有序均匀分组有 ·A 种方法.故共有C ( C C A + ·A )=84种.

...4个不同的盒子内,(1)共有多少种放法?(2)若恰有1个盒子不放球,有多少...
:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有:44=256种.(2)“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.选择一个盒子放2个球,有C14C24,选择2个盒子各放一个球的方法数:A23,共有方法数:C14C24A23=144种放法.(...

有四个不同的球,四个不同的盒子,现在要把球全部放入盒内恰有一个盒不...
恰有一个盒内放2个球,所以先从4种球种挑两个,有C2,4=6种挑法 这时候,分成三堆球,1,1,2 因为分成三堆,从中选出一个两堆的,其他两堆就不用排序了。然后再把这三堆球放到4个不同的盒子里,有A3,4=24种方法 所以总共有24×6=144种方法 盒子与小球都各不相同 ,那么挑了两个小球...

有四个不同的球,四个不同的盒子,现在要把球全部放入盒子内。每个盒子都...
1. 4^4=256.2. 恰有一个盒不放球, 先选一个不放球的盒子:C4,1 4个球放入3个盒子里,都要放,则是1,1,2 再选一个盒子放两个球:C3,1 所以:共有C4,1*C3,1*C4,2*P2,2=144种。共有144种不同的方法!!!

...有4个不同的球,四个不同的盒子,把球全部放入盒内,共有多少种不同的...
每个盒子都放球,A(4,4)=4*3*2*1=24,只有3个盒子放球,C(4,1)*C(4,2)A(3,2)=4*6*6=144恰有两个盒子不放球C(4,2)【A(4,2)+A(4,3)】=6*36=216只有一个盒子放球,4加起来24+144+216+4=3882、恰有一个盒子内放2个球,有多少种不同放法?恰有一个盒子内放...

...同的盒子把球全部放入盒内。恰有一个盒不放球共有几种
四个球标号1。2。3。4,盒子标号ABCD,一开始4个球中选3个 第一种:假如选123,盒子选D不放,然后再比如1放A,2放B,3放C,4号球放A中。第二种:将如选234,盒子选D不放,然后比如4放A,2放B,3放C,1号球放A中 这两种按你的算法是不同的,实际是一样的。

相似回答
大家正在搜