有4个不同的球,把球全部放入4个不同的盒子内,(1)共有多少种放法?(2)若恰有1个盒子不放球,有多少种放法?(3)若恰有2个盒子不放球,有多少种放法?
C | 14 |
C | 24 |
A | 23 |
C | 14 |
C | 24 |
A | 23 |
| ||
|
有4个不同的球,把球全部放入4个不同的盒子内,(1)共有多少种放法?(2...
:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有:44=256种.(2)“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.选择一个盒子放2个球,有C14C24,选择2个盒子各放一个球的方法数:A23,共有方法数:C14C24A23=144种放法.(...
有四个不同的球,四个不同的盒子,把球全部放入盒内 一 共有几种放法...
解析:(1)恰有一个盒子不放球,那么一盒有2个球,另外两盒各1个球 所以共有:C(4,2)×A(4,3)=6×24=144种不同的放法。(注:先将球按2、1、1分组,再排列)(2)恰有一个盒子内有2个球,那么其他3个盒子中,有两盒各1个球,另1盒没有球,所以此题同第(1)小题解法相同,此...
4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球...
即另外三个盒子中恰有一个空盒,因此,“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事,共有C14C24A33=144种放法;(3)先从四个盒子中任意拿走两个,有C24种方法.然后问题转化为:“4个球,两个盒子,每个盒子必放球,有几种放法?”从放球数目看,可分为3,1和2,2两类:...
...放入盒内.(1)共有多少种放法?(用数字作答)(2)恰有
(1)每个球都有4种方法,故有4×4×4×4=256种 (2)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有C42A43=144种不同的放法. (3)四个球分为两组有两种...
4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球...
与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C 种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C C A 种方法;第二类有序均匀分组有 ·A 种方法.故共有C ( C C A + ·A )=84种.
将4个不同的球放入4个不同的盒子,一共有多少种放法,其中恰有一个空盒...
将4个不同的球放入2个不同的盒子有2*2*2*2=16种放法 将4个不同的球放入1个不同的盒子有1*1*1*1=81种放法 因此,恰好放1个盒子有1种方法 恰好放2个盒子有16-1=15种方法 恰好放3个盒子有81-15-1=65种方法 因此恰有一个空盒的概率是65\/256 ...
将4个不同的球放入4个不同的盒子,一共有多少种放法,其中恰有一个空盒...
把四个不同的球放到四个不同的盒子里有4*4*4*7=256种不同的放法。因为四个球,不相同,放入盒子中是独立的事件。而其中有一个是空盒的时候:假如将4个球随即的放到4个不同的盒子里应该有4*4*4*4种不同的放法,而有一个盒子是空的话,就应该有(3*3*2*1)*4种不同的放法,那么一...
有4个不同的小球,4个不同的盒子,现要把球全部放进盒子内.恰有1个盒...
先把4个球分成3组,共有C24=6种方法,再把这3组小球进入4个盒子,有A34=24种方法,根据分步计数原理,可得恰有1个盒子不放球的方法共有 6×24=144种,故答案为 144.
有四个不同的球,四个不同的盒子,现在要把球全部放入盒内恰有一个盒不...
恰有一个盒内放2个球,所以先从4种球种挑两个,有C2,4=6种挑法 这时候,分成三堆球,1,1,2 因为分成三堆,从中选出一个两堆的,其他两堆就不用排序了。然后再把这三堆球放到4个不同的盒子里,有A3,4=24种方法 所以总共有24×6=144种方法 盒子与小球都各不相同 ,那么挑了两个小球...
...有4个不同的球,四个不同的盒子,把球全部放入盒内,共有多少种不同的...
每个盒子都放球,A(4,4)=4*3*2*1=24,只有3个盒子放球,C(4,1)*C(4,2)A(3,2)=4*6*6=144恰有两个盒子不放球C(4,2)【A(4,2)+A(4,3)】=6*36=216只有一个盒子放球,4加起来24+144+216+4=3882、恰有一个盒子内放2个球,有多少种不同放法?恰有一个盒子内放...