4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内

4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种选法?(3)恰有2个盒不放球,共有几种放法?

(1)为保证“恰有一个盒内不放球”,先选一个盒子,有
C14
种方法;再将4个球分成2,1,1三组,有
C24
种分法,然后全排列,由分步乘法计数原理,共
A33
有种放法,故共有
C14
C24
A33
=144种放法;
(2)“恰有一个盒内有2个球”,即另外的三个盒子放2个球,每个盒子至多放1个球,即另外三个盒子中恰有一个空盒,因此,“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事,共有
C14
C24
A33
=144种放法;
(3)先从四个盒子中任意拿走两个,有
C24
种方法.然后问题转化为:“4个球,两个盒子,每个盒子必放球,有几种放法?”从放球数目看,可分为3,1和2,2两类:
第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有
C34
C12
种放法;
第二类:有
C24
种放法.
由分步计数原理得“恰有两个盒子不放球”的放法有
C24
C34
C12
+
C24
)=84放法.
温馨提示:内容为网友见解,仅供参考
无其他回答

4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球...
由分步计数原理,共有C C C ×A =144种.(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,...

4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球...
即另外三个盒子中恰有一个空盒,因此,“恰有一个盒子放2球”与“恰有一个盒子不放球”是一回事,共有C14C24A33=144种放法;(3)先从四个盒子中任意拿走两个,有C24种方法.然后问题转化为:“4个球,两个盒子,每个盒子必放球,有几种放法?”从放球数目看,可分为3,1和2,2两类:...

有4个不同的球,四个不同的盒子。把球全部放入盒内,恰有一个盒子不放球...
解析:(1)恰有一个盒子不放球,那么一盒有2个球,另外两盒各1个球 所以共有:C(4,2)×A(4,3)=6×24=144种不同的放法。(注:先将球按2、1、1分组,再排列)(2)恰有一个盒子内有2个球,那么其他3个盒子中,有两盒各1个球,另1盒没有球,所以此题同第(1)小题解法相同,此...

有4个不同的小球,4个不同的盒子,现要把球全部放进盒子内.恰有1个盒...
先把4个球分成3组,共有C24=6种方法,再把这3组小球进入4个盒子,有A34=24种方法,根据分步计数原理,可得恰有1个盒子不放球的方法共有 6×24=144种,故答案为 144.

有4个不同的球,把球全部放入4个不同的盒子内,(1)共有多少种放法?(2...
:(1)一个球一个球地放到盒子里去,每只球都可有4种独立的放法,由分步乘法计数原理,放法共有:44=256种.(2)“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.选择一个盒子放2个球,有C14C24,选择2个盒子各放一个球的方法数:A23,共有方法数:C14C24A23=144种放法.(...

有四个不同的球,四个不同的盒子,现在要把球全部放入盒内恰有一个盒不...
恰有一个盒内放2个球,所以先从4种球种挑两个,有C2,4=6种挑法 这时候,分成三堆球,1,1,2 因为分成三堆,从中选出一个两堆的,其他两堆就不用排序了。然后再把这三堆球放到4个不同的盒子里,有A3,4=24种方法 所以总共有24×6=144种方法 盒子与小球都各不相同 ,那么挑了两个小球...

...了? 四个不同的球四个不同的盒子把球全部放入盒内。恰有一个盒不放...
四个球标号1。2。3。4,盒子标号ABCD,一开始4个球中选3个 第一种:假如选123,盒子选D不放,然后再比如1放A,2放B,3放C,4号球放A中。第二种:将如选234,盒子选D不放,然后比如4放A,2放B,3放C,1号球放A中 这两种按你的算法是不同的,实际是一样的。

有四个不同的球,四个不同的盒子,现在要把球全部放入盒子内。每个盒子都...
1. 4^4=256.2. 恰有一个盒不放球, 先选一个不放球的盒子:C4,1 4个球放入3个盒子里,都要放,则是1,1,2 再选一个盒子放两个球:C3,1 所以:共有C4,1*C3,1*C4,2*P2,2=144种。共有144种不同的方法!!!

有4个不同的球,4个不同的盒子,现在要把球全部放入盒内.(1)共有多少...
(1)每个球都有4种方法,故有4×4×4×4=256种 (2)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有C42A43=144种不同的放法. (3)四个球分为两组有两种...

有4个不同的球,4个不同的盒子,把球全部放入盒内。恰有2个盒子内不放...
你好!一。先在四个盒子中选两个盒子为:(4*3)\/2=6 二。选好的两个盒子放球,有三种情况,一盒1个,一盒3个;一盒3个一盒1个;每盒两个球。三。所以一共有6*(4*2+6)=84种情况。因为格式关系,在这里不能写出数学符号,如有疑问可以追问。希望可以帮到你!

相似回答