若实数x 和y满足X2+Y2+4X-2Y-4=0则根号下X2+Y2的最大值

求根号下X²+Y²
的最大值?

由x²+y²+4x-2y-4=0

得(x+2)²+(y-1)²=3²

此圆的半径为3,圆心到原点的距离OP=√5

所以√(x²+y²)的最大值是OA=3+√5

√(x²+y²)的最小值是OB=3-√5

温馨提示:内容为网友见解,仅供参考
无其他回答

若实数x 和y满足X2+Y2+4X-2Y-4=0则根号下X2+Y2的最大值
由x²+y²+4x-2y-4=0 得(x+2)²+(y-1)²=3²此圆的半径为3,圆心到原点的距离OP=√5 所以√(x²+y²)的最大值是OA=3+√5 √(x²+y²)的最小值是OB=3-√5

若实数x、y满足x 2 +y 2 +4x-2y-4=0,则 x 2 + y 2 的最大值是 ___
+4x-2y-4=0 即 (x+2)2 +(y-1)2 =9,表示一个圆心在(-2,1),半径等于3的圆,x 2 + y 2 表示圆上的点与原点之间的距离,原点到圆心的距离为 5 ,结合图形知,x 2 + y 2 的最大值是 5 +3,故答案为 5 +3.

若实数x、y满足x^2+y^2+4x-2y-4=0,则根号下(x^2+y^2)的最大值是...
x^2+y^2+4x-2y-4=0 => (x + 2)^2 + (y-1)^2 = 3^3 是以(-2,1)为圆心,半径为3的圆 根号(x^2 + y^2)就是圆上的点到原点的距离 画图可知,距离最远的点到原点的距离为半径加上圆心到原点的距离 也就是 根号下(x^2+y^2)的最大值 = 3 + 根号(2^2 + 1^2 ) =...

若实数x,y满足 x平方+y平方+4x-2y-4=0,则根号下(x平方+y平方)的最...
X,Y满足: (x+2)^2+(y-1)^2=9,圆心与原点连线方程:Y=-1\/2X 代入圆方程得交点A,B。则A,B中必有一个是满足条件的最大值,另一个是最小值点。我都把方法告诉你了。你自己算啊

已知实数x,y满足方程x^2+y^2+4x-2y-4=0,则x^2+y^2的最大值是多少?
x^2+y^2+4x-2y-4=0 => (x+2)^2+(y-1)^2=9 这是以(-2,1)为圆心,3为半径的一个圆,x^2+y^2就是圆上一点到圆心的距离的平方,所求最大值就是求圆上一点到圆心的最远距离的平方,这个点就在连接原点和圆心的那条直径上,所以最远距离是3+√5 x^2+y^2的最大值是 14...

已知实数x,y满足方程x^2+y^2+4x-2y-4=0,则x^2+y^2的最大值是
(x+2)²+(y+2)(y-4)=0 (x+2)²=(y+2)(4-y)≥0 y≥-2 y≤4 4≥y≥-2 或 y≤-2 y≥4 不存在 由题意需x^2+y^2最大 所以|y|,|x|都需最大,所以y=4 则x=-2 原式最大=20

已知实数x,y满足x^2+y^2+4x-2y-4=0,则x^2+y^2的取值范围是多少
x^2+y^2+4x-2y-4=0 可以化成 (x+2)^2 + (y-1)^2 = 9 所以是以(-2,1)为圆心、半径为3的圆 x^2+y^2表示原点到这个圆上的任意一点的距离 那么可想而知,最近、最远的距离就是把原点(0,0)与圆心(-2,1)连起来 与圆相交得两个点 一个就是距离最长的,另一个就是最短的 ...

若实数X,Y满足X的平方+Y的平方+4X-2Y+-4=0,则根号X的平方+Y的平方的最...
X的平方+Y的平方+4X-2Y+-4=0,(x+2)^2+(y-1)^2=9 根号X的平方+Y的平方 表示圆上一点到坐标原点的距离的最大值 圆心到原点的距离+半径 =根号5+3

已知实数x,y满足x平方+y平方+4x-2y-4=0,则x平方+y平方的最大值...
j解:(x+2)²+(y-1)²=9 ∴设x=3sina-2 y=3cosa+1 ∴x²+y²=-4x+2y+4=-12sina+8+6cosa-2=-12sina+6cosa+6=6√5sin(a+b)+6 其中,sinb=1\/√5) cosb=-2\/√5.∴x²+y²的最大值为6√5+6 ...

实数x . y满足x2+y2 - 4x+2y - 4=0.则2x-y的最大值是?
x2+y2 - 4x+2y - 4=0 x2-4x+4+y2+2y+1=5+4 (x-2)2+(y+1)2=9 设x=3sint+2 y=3cost-1 则有 2x-y=6sint+6-3cost+1=6sint-3cost+7 因为 √(6^2+3^2)=3√5 所以 2x-y=3√5(6\/3√5sint-3\/3√5cost)+7 令cosA=6\/3√5 所以sinA=√(1-cos^2A)=√(...

相似回答