10个相同的小球放在3个不同的盒子里
根据重复组合公式,3个选10个的重复组合等于12个里选10个不重复的组合,所以是 C(12,10)=C(12,2)=12*11\/2=66 1楼的思路是对的,但是好像没有说每个盒子都必须要有球,所以按他的方法应该是 1+2+...+11=66
把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个...
我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为 把9个相同小球放3不同箱子,每箱至少1个,几种方法。解:c(8,2)=8×7÷2=28 答:有28种情况。
把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个...
我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为 把9个相同小球放3不同箱子,每箱至少1个,几种方法。解:c(8,2)=8×7÷2=28 答:有28种情况。
五年级奥数题:10个相同的小球,放入编号为1,2,3的三个盒子内,
这个题的关键点在于,10个小球是相同,但是三个盒子是不同的,所以对于每种放法,其结果可以用一个有序的数组表示(a,b,c)。“不同放法”中的“不同”是指a或者b或者c取不同的值。比如,(a,b,c)=(2,3,5),只要三个盒子中的球数满足这样一个关系,那么不管10个球当中的哪两个放在第一...
有编号为1、2、3的3个盒子和10个相同的小球,现把10个小球全部装入3个盒 ...
答案:C 提示: 有题意,先在3个盒子中分别放入与盒子的编号相同个数的球,则问题转化为把其余4个放入3个盒子的放法。分为四个情况:4个球放在1个盒子中,把4个球平分放在2个盒中,1盒放3个球,有1盒放2个球而另两盒都放1个。可得共有种,故选C。
10个相同的球放在3个相同的盒子里面,每盒至少一个,共几种方法
8种。其实题的本质是将10拆分为三个数的和 10=1+1+8, 10=1+2+7, 10+1+3+6, 10=1+4+5, 10=2+2+6, 10=2+3+5, 10=2+4+4, 10=3+3+4 将一个数拆分为几个数的和的规律好像还没有,,,所以只能采取列举法 ...
有编号为1,2,3的三个盒子和10个相同的小球,把这10个小球全部装入3个盒 ...
先放1,2,3的话,那么还剩下4个球,4个球放到3个不同的盒子里,情况有:0,0,4,分别在1,2,3号盒子中的任意一个中放4个,共3种情况;0,1,3,分别在1,2,3号盒子中的任意两个中放3个和1个,共6种情况;0,2,2,分别在1,2,3号盒子中的任意两个中放2个,共3种情况;1...
...把10个相同小球放入编号为1 ,2 ,3的三个不同盒子,使盒子里的小球个...
希望我的回答对你的学习有帮助 根据题意,先在编号为2、3的三个盒子中分别放入1、2个小球,编号为1的盒子里不放;再将剩下的7个小球放入3个盒子里,每个盒子里至少一个,分析可得,共C62=15种放法,即可得符合题目要求的放法共15种,故答案为15 ...
10个相同的小球,放入编号为1,2,3的三个盒子里,要求每个盒子的球数不...
根据题意,先在编号为2、3的三个盒子中分别放入1、2个小球,编号为1的盒子里不放;再将剩下的7个小球放入3个盒子里,每个盒子里至少一个;共:C26=6×52×1=15(种);即可得符合题目要求的放法共15种.故答案为:15.或另一种解法:一号箱的放法有五种:1,2,3,4,5.分别谈论,当...
11月14日数学10.将10个相同的小球,放入编号为1,2,3的3个盒子中,
首先在编号1放1个,在编号2放2个在编号3放3个,这就满足条件了,手里还4个球可以随便放第一个球可以3中选择,第二高也是,以此类推,所以有3X3X3X3=81种选择。答案就是81种。