已知:x+y+z=0,求证:x³+y³+z³-3xyz=0
x³+y³+z³=(x+y+z)(x²+y²+z²-xy-yz-zx)+3xyz 因为 x+y+z=0,所以 x³+y³+z³=3xyz
已知:x+y+z=0,求证:x³+y³+z=3xyz.
X^3+Y^3+Z^3=(X+Y)(X^2-XY+Y^2)+Z^3 =-Z((X+Y)^2-3XY)+Z^3 =-Z^3+3XYZ+Z^3 =3XYZ LZ题目错了吧~Z^3?
若三个未知数的和等于0求三个未知数的立方和
=(x³+y³+z³-3xyz)+3xyz =(x+y+z)(x²+y²+z²-xy-yz-xz)+3xyz 因为x+y+z=0 所以 =3xyz
当x+y+z=0,x的立方加y的立方加z的立方等于3xyz怎么证明
解答:由公式:x³+y³+z³-3xyz=﹙x+y+z﹚﹙x²+y²+z²-xy-yz-zx﹚得:x³+y³+z³-3xyz=0 ∴x³+y³+z³=3xyz。
若x+y+z=0,则x³+y³+z³=?
x+y+z=0 则z=-(x+y)z³=-(x+y)³=-(x³+3x²y+3xy²+y³)=-(x³+y³)-3xy(x+y)=-(x³+y³)+3xyz x³+y³+z³=3xyz
x+y+z=0 求x的立方+y的立方+z的立方
(x+y+z)³=X³+y³+z³+3x²y+3²z+3xy²+3y²z+3xz²+3yz²+6xyz =X³+y³+z³+3xy(x+y+z)+3xz(x+y+z)+3yz(x+y+z)-3xyz ∵x+y+z=0 ∴X³+y³+z³=3xyz ...
若三个未知数的和等于0求三个未知数的立方和
x³+y³+z³=(x³+y³+z³-3xyz)+3xyz =(x+y+z)(x²+y²+z²-xy-yz-xz)+3xyz 因为x+y+z=0 所以 =3xyz
若X+Y+Z=0,则XYZ分别三次方后的和为多少?A :0 B:X平方y+y平方z+z...
x³+y³+z³=(x+y)(x²-xy+y²)+z³=(-z)[(x+y)²-3xy]+z³=z[z²-(-z)²+3xy]=3xyz 故选D
初中数学,求助,谢谢解答
证明:易知,当x,y,z≥0时,有x³+y³+z³≥3xyz.因a,b,c≥0.故可令a=x³,b=y³,c=z³.则abc=(xyz)³.∴xyz=(abc)^(1\/3).代入上面的不等式得:a+b+c≥3(abc)^(1\/3).注:(abc)^(1\/3)表示abc的三分之一次方,也即三次根号下的...
因式分解问题
x³+y³+z³-3xyz =(x³+3x²y+3xy²+y³+z³)-(3xyz+3x²y+3xy²)=[(x+y)³+z³]-3xy(x+y+z)=(x+y+z)(x²+y²+2xy-xz-yz+z²)-3xy(x+y+z)=(x+y+z)(x²+y²+z...