1-2/1*(1+2)-3/(1+2)*(1+2+3)-4/(1+2+3)*(1+2+3+4)-10/(1+2+3+...+9)*(1+2+3+...+10)
2\/1*(1+2)+3\/(1+2)*(1+2+3)+4\/(1+2+3)*(1+2+3+4)+...+100\/(1+2+3+...
把一般项(也就是通项)的分子写成分母的差(如 4=(1+2+3+4)-(1+2+3)),再把它写成差,约分后通项为 1\/(1+2+3+...+n)-1\/(1+2+3+...+n+1) ,因此原式=[1-1\/(1+2)]+[1\/(1+2)-1\/(1+2+3)]+...+[1\/(1+2+3+...+99)-1\/(1+2+3+...+100)]=1-1...
2\/1*(1+2) + 3\/(1+2)*(1+2+3) +4\/(1+2+3)*(1+2+3+4)+…+100\/(1+2+3...
2\/1*(1+2)=2\/3=1-1\/(1+2)根据这个规律可化简这个式子,因此最后结果是1-1\/(1+2+3...+100)=5049\/5050
(1+2)\/2*(1+2+3)\/(2+3)*(1+2+3+4)\/(2+3+4)*…(1+2+3+…1993)\/(2+3+...
解答:取An=[1+2+3+...+(n+1)]\/[2+3+...+(n+1)][n≥1,n∈Z] ,则 An=0.5(n+1)(n+2)\/[0.5(n+1)(n+2)-1]=(n+1)(n+2)\/n(n+3),原式=A1×A2×A3×...×An =[(2×3)\/(1×4)]×[(3×4)\/(2×5)]×[(4×5)\/(3×6)]×...×[(n+1)(n+...
1-1\/(1+2)-1\/(1+2+3)-1\/(1+2+3+4)-...-1\/(1+2+3+4+...+100)=?_百度知...
裂项法:1-1\/(1+2)-1\/(1+2+3)-1\/(1+2+3+4)-...-1\/(1+2+3+4+...+100)=1-2\/6-2\/12-2\/20-……-2\/100×101 =1-2×(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/100-1\/101)=1-2×(1\/2-1\/101)=1-1+2\/101 =2\/101 ...
...+3\/[(1+2)*(1+2+3)]+4\/[(1+2+3)*(1+2+3+4)]+...+100\/[(1+2+...
1\/[n*(n+1)]=1\/n-1\/(n+1)1\/[n*(n+2)]=1\/2{1\/n-1\/(n+2)} 即 1\/[n*(n+m)]=1\/m{1\/n-1\/(n+m)} 你可以自己代数字 试一试 所以 该题 原式=1\/1-1\/3+1\/3-1\/6+...+1\/(99*100\/2)-1\/(100*101\/2)=1-1\/5050=5049\/5050 ...
1+(1+2)\/1+(1+2+3)\/1+(1+2+3+4)\/1+……+(1+2+3+4+5+6……+50)\/1如何...
从1开始连续n个数之和可表达为 1+2+3+……+n = n(n+1)\/2 对于题目中中任意一项,可以写成 1\/(1+2+3+……+n) = 2\/[n(n+1)]= 2*[1\/n - 1(n+1)]所以 1+1\/(1+2)+1\/(1+2+3)+---+1\/(1+2+3+---+50)= 2*[ 1\/1 - 1\/2 + 1\/2 - 1\/3 + 1\/3 - 1...
...+1\/(1+2+3) + 1\/(1+2+3+4) +...+1\/(1+2+3+...+2009) 怎么计算?括...
\/2,求倒则为An=2\/n(n+1),而2\/n(n+1)=2(1\/n - 1\/(n+1)),于是原式即为求普通式为An=2(1\/n - 1\/(n+1))(n>1),共有2008项的数列的和,将2提外,括弧里的式子可以有规律的进行删减,只留下(1\/2 - 1\/2010),于是式子最后即为计算2(1\/2 - 1\/2010)的值。
用简便方法计算:1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...1\/(1+2+3+4...2...
1\/(1+2+3+...+n)=1\/[n(n+1)\/2]=2\/[n(n+1)]=2[1\/n-1\/(n+1)]1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...1\/(1+2+3+4...2004)=2(1\/2-1\/3+1\/3-1\/4+...+1\/2004-1\/2005)=2(1\/2-1\/2005)=1-2\/2005 =2003\/2005 ...
...+3\/【(1+2)*(1+2+3)】+4\/【(1+2+3)*(1+2+3+4)】+…50\/【(1+2+...
=[(1+2)-1]\/[1•(1+2)]+[(1+2+3)-(1+2)]\/[(1+2)•(1+2+3)]+[(1+2+3+4)-(1+2+3)]\/[(1+2+3)•(1+2+3+4)]+...+[(1+2+...+50)-(1+2+...+49)]\/[(1+2+...+49)•(1+2+...+50)]=1-1\/(1+2)+1\/(1+2)-1\/(...
1+1\/(1+2)+1\/1+2+3)+1\/(1+2+3+4)……1\/(1+2+3+4+……2009)怎么做_百度...
1+2+3+……+n=n(n+1)\/2,所以,1\/(1+2+3+……+n)=2\/n*(n+1)。原式=1+2\/2*3+2\/3*4+2\/4*5+……+2\/2009*2010 =1+2(1\/2*3+1\/3*4+1\/4*5+……+1\/2009*2010)=1+2*(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+……+1\/2009-1\/2010)=1+2*(1\/2-1\/2010)=1+...