紧急求助lim(x→0)(ex-e-x)\/sinx
[e^x-e^(-x)]\/sinx=[e^x-e^(-x)]\/x*x\/sinx 用洛必达法则求lim(x→0)[e^x-e^(-x)]\/x=lim(x→0)[e^x+e^(-x)]=2 lim(x→0)[e^x-e^(-x)]\/sinx=lim(x→0)[e^x-e^(-x)]\/x*lim(x→0)x\/sinx=2*1=2 ...
limx趋近于0(ex-e-x)\/x
ex--〉1+x 所以ex-e-x--〉1+x-(1-x)=2x 取极限等于2
计算: lim (x->0)ex+e-x\/sin2x =?
式子上下在x趋向0时,取值均为0,因此可以取导,在求该极限,结果为1
limx趋近于0(ex-e-x)\/x
ex--〉1+x 所以ex-e-x--〉1+x-(1-x)=2x 取极限等于2
limx→0 ex次方-e负x次方÷x
limx→0 (ex次方-e负x次方)÷x =limx→0 [e^x-e^(-x)]'\/x'=limx→0 [e^x+e^(-x)]=e^0+e^0 =2 希望能帮到你,祝学习进步O(∩_∩)O
y={ex-e(-x)}\/sinx求导
直接套用公式(fx\/gx)'=(fx'gx-fxgx')\/gx^2
计算极限limx→0eex?eesinxx?sinx=__
sinx=elimx→0esinxex?sinx?1x?sinx=elimx→0x?sinxx?sinx=e.【解法2】对f(t)=eet在区间[sinx,x]应用拉格朗日中值公式,可得eex?eesinx=f′(ξ)(x?sinx),ξ∈[sinx,x].因为f′(t)=eet?et,又因为limx→0x=limx→0sinx=0,所以limx→0f′(ξ)=f′(0)=e,从而,li...
求极限 limx→0ex?e?xsinx
由诺必达法则对分子分母同时求导有:limx→0ex?e?xsinx=limx→0ex+e?xcosx=2
求ex-e-x\/x的极限(x趋于零)
用洛必达,即ex+e-x\/1=2
limx→0ex-earcsinx\/x
arcsinx = x +(1\/6)x^3 +o(x^3)e^x - e^(arcsinx)=e^x - e^[x +(1\/6)x^3 +o(x^3)]=e^x . { 1 - e^[(1\/6)x^3 +o(x^3)] } =e^x . [ -(1\/6)x^3 +o(x^3) ]lim(x->0) [e^x - e^(arcsinx)] \/x^3 =lim(x->0) e^x . [ -(1\/6...