解:原式=∫<0,2π>dθ∫<0,√3a/2>rdr∫<a-√(a²-r²),√(a²-r²)>z²dz (做柱面坐标变换)
=(2π/3)∫<0,√3a/2>[(a²-r²)^(3/2)-(a-√(a²-r²))³]rdr
=(π/3)∫<0,√3a/2>[a³-3a²(a²-r²)^(1/2)+3a(a²-r²)-2(a²-r²)^(3/2)]d(a²-r²)
=(π/3)[a³(a²-r²)-2a²(a²-r²)^(3/2)+(3/2)a(a²-r²)²-(4/5)(a²-r²)^(5/2)]│<0,√3a/2>
=(π/3)(a^5/4-a^5/4+3a^5/32-a^5/40-a^5+2a^5-3a^5/2+4a^5/5)
=59π/480。
温馨提示:内容为网友见解,仅供参考