(1/2+1/3…+1/2003)(1+1/2+1/3+…+1/2004)-(1+1/2+1/3+…+1/2003)(1/2+1/3+…+1/2004)=?

如题所述

设a=(1/2+1/3+...+1/2003) 原式=a(1+a+1/2004)-(1+a)(a+1/2004) =a+a^2+a/2004-a-1/2004-a^2-a/2004 =-1/2004
温馨提示:内容为网友见解,仅供参考
无其他回答

(1\/2+1\/3…+1\/2003)(1+1\/2+1\/3+…+1\/2004)-(1+1\/2+1\/3+…+1\/2003)(1...
设a=(1\/2+1\/3+...+1\/2003) 原式=a(1+a+1\/2004)-(1+a)(a+1\/2004) =a+a^2+a\/2004-a-1\/2004-a^2-a\/2004 =-1\/2004

(1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……1\/2004)-(1+1\/2+1\/3……1\/2003...
(1+1\/2+1\/3……+1\/2003)(1\/2+1\/3+……1\/2004)=(1+1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……1\/2004)—(1+1\/2+1\/3……+1\/2003) 2式 原式=1式—2式=(1+1\/2+1\/3……+1\/2003)—(1+1\/2+1\/3+……1\/2004)=—1\/2004 ...

...1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……+1\/2004)-(1+1\/2+1\/3+...
设1\/2+1\/3+……+1\/2003=x 则原式=x(1+x+1\/2004)-(1+x+1\/2004)=(x-1)*(1+x+1\/2004)你这个题目是不是抄错了?无法消除中间项。我记得我做过一个这样的题,是一个乘积减去另一个乘积。而你被减数是2次的,减数是1次的,这中间就会有一些东西无法消除导致无法巧算。希望你能重新...

...+...+1\/2003)(1+1\/2+1\/3+...+1\/2004)-(1+1\/2+1\/3+...1\/2003)(1\/...
所以如果把前后两个式子都打开 然后相减 就会剩前边是1\/2+1\/3+...+1\/2003 后边剩1\/2+1\/3+...+1\/2004 再相减 所以答案是-1\/2004

...1+1\/2+...+1\/2003)-(1+1\/2+...+1\/2004)(1\/2+1\/3+...+1\/2003)=...
第一个括号里先+1再-1,也就是变成(1+1\/2+1\/3+1\/4+...+1\/2004-1)式子就变成【(1+1\/2+1\/3+1\/4+...+1\/2004)-1】(1+1\/2+1\/3+...+1\/2003)-(1+1\/2+1\/3+...+1\/2004)(1\/2+1\/3+1\/4+...+1\/2003)把前两个乘积按分配律展开,就变成:(1+1\/2+1\/3...

...1\/2+1\/3+..+1\/2013)(1\/2+1\/3+1\/2004)-(1+1\/2+1\/3+...+1\/2004)(1...
设x=1\/2+1\/3+..+1\/2013 y=1\/2+1\/3+……+1\/2004 (1+1\/2+1\/3+..+1\/2013)(1\/2+1\/3+……+1\/2004)-(1+1\/2+1\/3+...+1\/2004)(1\/2+1\/3+...+1\/2003)=(1+x)y-(1+y)x =y+xy-x-xy =y-x =1\/2004 ...

(1\/2+1\/3+...+1\/2004)乘(1+1\/2+...+1\/2003)减(1+1\/2+...1\/2004)乘(1...
令1+1\/2+..+1\/2004=a;1+1\/2+,,,+1\/2003=b;则有:(a-1)×b-a×(b-1)=ab-b-ab+a =a-b =1\/2004;您好,很高兴为您解答,skyhunter002为您答疑解惑 如果本题有什么不明白可以追问,如果满意记得采纳 如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。祝学习...

求助,这个题怎么做1\/2+1\/3+1\/4+……+1\/2003+1\/2004=?
答案是:=ln(2005)+C≈7.6033993397407+0.57722=8.18 (C是欧拉常数≈0.57722)1\/n[1\/(1\/n)+1\/(2\/n)+………+1\/(1\/n)]=积分 1\/xdx(区间是0到1)证明如下:由于ln(1+1\/n)<1\/n (n=1,2,3,…)于是调和级数的前n项部分和满足 Sn=1+1\/2+1\/3+…+1\/n>ln(1+1)+...

求解1\/1+2+1\/2+3+1\/3+4+...+1\/2003+2004 . 急急急~~~呀
=2003\/2004 1\/(√1+√2)+1\/(√2+√3)+1\/(√3+√4)+...+1\/(√2003+√2004)=(√2-√1)\/(2-1)+(√3-√2)\/(3-2)+……+(√2004-√2003)\/(2004-2003)=(√2-√1)+(√3-√2)+……+(√2004-√2003)=√2004-1 =2√501-1 麻烦你在打字时输入得准确一点,免得我们看...

1+1+1\/2+1+1\/2+1\/3+1+1\/3+1\/4+。。。1+1\/2003+1\/2004等于多少
+(1\/2+1\/3+1\/4+...+1\/2004)=(1+1+1+..+1)+(1+1\/2+1\/3+...+1\/2003)+(1+1\/2+1\/3+1\/4+...+1\/2004-1)=2003+ln(2003+1)+r+ln(2004+1)+r-1 =2002+ln(2004*2005)+2r (其中1+1\/2+1\/3+...+1\/n=ln(n+1)+r,为调和级数,r=0.577为欧拉常数)...

相似回答
大家正在搜