麻烦告诉我怎么算,要有计算过程的
麻烦看清楚些,至今为止的都还不是正确答案.
(1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……1\/2004)-(1+1\/2+1\/3……1\/2003...
=(1+1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……1\/2004)—(1+1\/2+1\/3+……1\/2004) 1式 (1+1\/2+1\/3……+1\/2003)(1\/2+1\/3+……1\/2004)=(1+1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……1\/2004)—(1+1\/2+1\/3……+1\/2003) 2式 原式=1式—2式=(1+1\/...
(1\/2+1\/3…+1\/2003)(1+1\/2+1\/3+…+1\/2004)-(1+1\/2+1\/3+…+1\/2003)(1...
设a=(1\/2+1\/3+...+1\/2003) 原式=a(1+a+1\/2004)-(1+a)(a+1\/2004) =a+a^2+a\/2004-a-1\/2004-a^2-a\/2004 =-1\/2004
计算下题(1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……+1\/2004)-(1+1\/2+...
设1\/2+1\/3+……+1\/2003=x 则原式=x(1+x+1\/2004)-(1+x+1\/2004)=(x-1)*(1+x+1\/2004)你这个题目是不是抄错了?无法消除中间项。我记得我做过一个这样的题,是一个乘积减去另一个乘积。而你被减数是2次的,减数是1次的,这中间就会有一些东西无法消除导致无法巧算。希望你能重新...
简算(1\/2+1\/3+...+1\/2003)(1+1\/2+1\/3+...+1\/2004)-(1+1\/2+1\/3+...
就会剩前边是1\/2+1\/3+...+1\/2003 后边剩1\/2+1\/3+...+1\/2004 再相减 所以答案是-1\/2004
...1+1\/2+...+1\/2003)-(1+1\/2+...+1\/2004)(1\/2+1\/3+...+1\/2003)=...
第一个括号里先+1再-1,也就是变成(1+1\/2+1\/3+1\/4+...+1\/2004-1)式子就变成【(1+1\/2+1\/3+1\/4+...+1\/2004)-1】(1+1\/2+1\/3+...+1\/2003)-(1+1\/2+1\/3+...+1\/2004)(1\/2+1\/3+1\/4+...+1\/2003)把前两个乘积按分配律展开,就变成:(1+1\/2+1\/3...
(1\/2+1\/3+...+1\/2004)乘(1+1\/2+...+1\/2003)减(1+1\/2+...1\/2004)乘(1...
.+1\/2004=a;1+1\/2+,,,+1\/2003=b;则有:(a-1)×b-a×(b-1)=ab-b-ab+a =a-b =1\/2004;您好,很高兴为您解答,skyhunter002为您答疑解惑 如果本题有什么不明白可以追问,如果满意记得采纳 如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。祝学习进步 ...
...1\/2+1\/3+..+1\/2013)(1\/2+1\/3+1\/2004)-(1+1\/2+1\/3+...+1\/2004)(1...
设x=1\/2+1\/3+..+1\/2013 y=1\/2+1\/3+……+1\/2004 (1+1\/2+1\/3+..+1\/2013)(1\/2+1\/3+……+1\/2004)-(1+1\/2+1\/3+...+1\/2004)(1\/2+1\/3+...+1\/2003)=(1+x)y-(1+y)x =y+xy-x-xy =y-x =1\/2004 ...
...\/2+1\/3+...1\/2004)-(1+1\/2+...+1\/2005)*(1\/2+1\/3+...+1\/2004)_百...
原式为:=(1\/2+1\/3+...+1\/2005)*(1\/2+1\/3+...1\/2004)+(1\/2+1\/3+...+1\/2005)-(1\/2+...+1\/2005)*(1\/2+1\/3+...+1\/2004)-(1\/2+1\/3+...+1\/2004)注:使用乘法分配律 =(1\/2+1\/3+...+1\/2005)-(1\/2+1\/3+...+1\/2004)=1\/2005 ...
求助,这个题怎么做1\/2+1\/3+1\/4+……+1\/2003+1\/2004=?
答案是:=ln(2005)+C≈7.6033993397407+0.57722=8.18 (C是欧拉常数≈0.57722)1\/n[1\/(1\/n)+1\/(2\/n)+………+1\/(1\/n)]=积分 1\/xdx(区间是0到1)证明如下:由于ln(1+1\/n)<1\/n (n=1,2,3,…)于是调和级数的前n项部分和满足 Sn=1+1\/2+1\/3+…+1\/n>ln(1+1)+...
...3+...+1\/2005)(1+1\/2+1\/3+...+1\/2004)-(1+1\/2+1\/3+...+1\/2005...
解:(1\/2+1\/3+...+1\/2005)(1+1\/2+1\/3+...+1\/2004)-(1+1\/2+1\/3+...+1\/2005)(1\/2+1\/3+...+1\/2004)=(1\/2+1\/3+...+1\/2005)+(1\/2+1\/3+...+1\/2005)(1\/2+1\/3+...+1\/2004)-(1+1\/2+1\/3+...+1\/2005)(1\/2+1\/3+...+1\/2004)=(1\/2+1\/3...