...1\/2+...+1\/2004)-(1+1\/2+...+1\/2005)(1\/2+1\/3+...+1\/2004)_百度知 ...
依题意得: 令t=1\/2+1\/3…+1\/2004,则原试=(t+1\/2005)*(1+t)-(1+t+1\/2005)*t =t+t平方+1\/2005+1\/2005*t-t平方-2006\/2005*t =1\/2005
...1\/2004)-(1+1\/2+1\/3……1\/2003)(1\/2+1\/3……+1\/2004)=
(1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……1\/2004)=(1+1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……1\/2004)—(1+1\/2+1\/3+……1\/2004) 1式 (1+1\/2+1\/3……+1\/2003)(1\/2+1\/3+……1\/2004)=(1+1\/2+1\/3……+1\/2003)(1+1\/2+1\/3+……1\/2004)—(1+1\/...
(1\/2+1\/3+..….十1\/2002)(1+1\/2+1\/3+……+1\/2001)-(1+1\/2
手机提问的朋友在客户端右上角评价点【评价】,然后就可以选择【满意,问题已经完美解决】了
求助,这个题怎么做1\/2+1\/3+1\/4+……+1\/2003+1\/2004=?
答案是:=ln(2005)+C≈7.6033993397407+0.57722=8.18 (C是欧拉常数≈0.57722)1\/n[1\/(1\/n)+1\/(2\/n)+………+1\/(1\/n)]=积分 1\/xdx(区间是0到1)证明如下:由于ln(1+1\/n)<1\/n (n=1,2,3,…)于是调和级数的前n项部分和满足 Sn=1+1\/2+1\/3+…+1\/n>ln(1+1)+...
1\/2+1\/3+1\/4+...+1\/2003=?
1\/2+1\/3+1\/4+...是一个发散的数列求和,没有公式。这个题不是这么做。
1\/2+(1\/3+2\/3)+(1\/4+2\/4+3\/4)+…+(1\/2005+2\/2005+……2003\/2005+2004\/...
解:1\/n+2\/n+…+(n-1)\/n=1\/n*[1+2+…+(n-1)]=1\/n*(1+n-1)*(n-1)*1\/2 =1\/2(*n-1)则原式=1\/2*(2-1)+1\/2*(3-1)+…+1\/2*(2005-1)=1\/2*(2-1+3-1+…+2005-1)=1\/2*(1+2+…+2004)=1\/2*(2004+1)*2004*1\/2 =1004505 ...
1\/2+1\/3+1\/4+1\/5+...1\/2012=
这是调和级数,和趋向于无穷大,目前还没有一个简单的公式表示这个和。有一个近似公式:1+1\/2+1\/3+...+1\/n=lnn+γ+O(1\/n) ,其中 γ=lim(n→∞)(1+1\/2+1\/3+...+1\/n-lnn)=0.57721566490153286060651209 叫欧拉常数。
请教一道小学数学题,1\/1x2+1\/2x3+1\/3x4+1\/4x5+...1\/2005x2006怎么算...
解:根据两个连续自然数A,B.1\/A-1\/B=1\/AB得 原式 =1-1\/2+(1\/2-1\/3)+(1\/4-1\/3)+(1\/5-1\/4)+...+(1\/2006-1\/2005)=1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1\/5+...+1\/2005-1\/2006)=1-1\/2006 =2005\/2006....
求高手解题:(1+1\/2+1\/3+1\/4)×(1\/2+1\/3+1\/4+1\/5)—(1+1\/2+1\/3+1\/4...
令a=1\/2+1\/3+1\/4 则原式=(1+a)(a+1\/5)-(1+a+1\/5)a =(1+a)a+1\/5(1+a)-(1+a)-1\/5a =1\/5(1+a)-1\/5a =1\/5+1\/5a-1\/5a =1\/5
1+1+1\/2+1+1\/2+1\/3+1+1\/3+1\/4+。。。1+1\/2003+1\/2004等于多少
1+1+1\/2+1+1\/2+1\/3+1+1\/3+1\/4+。。。1+1\/2003+1\/2004 =(1+1+1\/2)+(1+1\/2+1\/3)+(1+1\/3+1\/4)+...+(1+1\/2003+1\/2004)=(1+1+1+..+1)+(1+1\/2+1\/3+...+1\/2003)+(1\/2+1\/3+1\/4+...+1\/2004)=(1+1+1+..+1)+(1+1\/2+1\/3+...+1\/2003...