将N个球随机地放入n个盒子中(n>N),求:

每个盒子中最多有一个球的概率?
计算过程。

先求 N个球随机地放入 n个盒子的方法总数。因为每个球都可以落入 n个盒子中的任何一个,有 n种不同的放法,所以 N个球放入 n个盒子共有 n^N种不同的放法。
每个盒子最多有一个球的放法。第一个球可以放进 n个盒子之一,有n 种放法;第二个球只能放进余下的 n-1个盒子之一,有n -1种放法;...第N个球只能放进余下的n -N+1个盒子之一,有n -N+1种放法;所以共有n (n -1)…(n -N+1)种不同的放法。故得 每个盒子最多有一个球的放法的概率为
n (n -1)…(n -N+1)/n^N
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-05-26
P(n,N)/N^n

将N个球随机地放入n个盒子中(n>N),求:
先求 N个球随机地放入 n个盒子的方法总数。因为每个球都可以落入 n个盒子中的任何一个,有 n种不同的放法,所以 N个球放入 n个盒子共有 n^N种不同的放法。每个盒子最多有一个球的放法。第一个球可以放进 n个盒子之一,有n 种放法;第二个球只能放进余下的 n-1个盒子之一,有n -1...

概率论的问题: 将n只球随机的放入N(N>n)个盒子中去,试求每个盒子至多有...
(设盒子的容积不限)还有一个相同的数学模型,假设每人的生日在一年365天中的任一天是等可能...概率论的问题: 将n只球随机的放入N(N>n)个盒子中去,试求每个盒子至多有一只球的概率。(设盒子的容积不限) 还有一个相同的数学模型,假设每人的生日在一年365天中的任一天是等可能的,即都等于1\/365,那么随机选取n...

高中概率!!将n球随机的放入N(N≥n)个盒子中去,则每个盒子至多有一只球的...
解答:题目的意思很明确,换个思路就是说,我要从N个盒子中挑出n个来,每个里面放一个球。(因为盒子比球多)那么概率应该是C n(上)N(下) = n!\/[N!(N-n)!]

将n个球随机放入N(N>=n)个盒子中去,计算每个盒子至多有一个球的概率...
1、C(N,n)在N个盒子里面选出n个盒子的所有组合方法 2、n个球放n个盒子,恰好每个盒子一个球的概率:(n的阶乘)\/(n的n次方)3、所以答案=C(N,n)*(n的阶乘)\/(n的n次方)=P(N,n)\/(n的n次方)

将n球放进N个盒子N>n,试求每个盒子至多一个球的可能性,为什么不是CnN...
如果球不同,盒相同,按照插板法(插空法),是将n个球分成N个盒子,每个盒子至少1个,所以一共是在n个球之间的(n-1)个空插(N-1)个板,应该是C(n-1,N-1)。如果球不同,盒不同,还要考虑不同分法下不同盒子里放不同数量的球,所以先把球按照一定顺序排成一列,有A(n,n)种排列...

将n 只球随机地放入N(n≥N) 盒子,设每个盒子都可以容纳n 只球,求下 ...
解释如下:因为每放入一个球都有m种选择,根据乘法原则,样本点总数为m ^ n。而有效的样本点数,一定是有而且只x个盒子里有球,因此,首先选出x个盒子,即C(m, x),然后,这x个盒子里都至少有一个球,这x个球按什么顺序都行,因此有P(x, x)种可能,最后还剩了(m - x)个球,这些球可以...

n个球等可能的放入N个盒子里,问至少两个球在同一个盒子里的概率?(N>...
没有两个球在同一个盒子的概率为:C(N,n) * n!\/N^n 所以至少两个球在同一个盒子里的概率为:1 - C(N,n) * n!\/N^n

将n只球随机地放入n个盒子中,则每个盒子中恰好有1只球的概率为() 麻 ...
*...*3*2*1\/(n^n)理由:把“将n只球随机地放入n个盒子中”分成n次操作,每次操作把1个球放入n个盒子中,每次有n种放法,故总数是n^n, 第一次符合要求的放法有n种,第二次有(n-1)种,...,第n次只有1种。所以所求概率为n*(n-1)*(n-2)*...*3*2*1\/(n^n)....

将n个球(1~n号)随机放进n个盒子中
将n个球(1~n号)随机放进n个盒子中,一个盒子装一个球,若一个球装入与球同号的盒子中,称为配对,记X为总的配对数,求E(X)... 将n个球(1~n号)随机放进n个盒子中,一个盒子装一个球,若一个球装入与球同号的盒子中,称为配对,记X为总的配对数,求E(X) 展开 ...

将n个完全相同的球随机放入N个盒子中,求:某个指定的盒子中恰有k个球...
因为球是完全相同的(不加区分),故放法只有一种。其它盒子放球是n-1次重复的独立放球试验,每次试验的可能的结果是将球放入第1,2,3,……,N个盒子(除去指定的那个),且放入每个盒子的概率都是1\/(N-1),用推广的伯努利试验的公式(见附图,出自复旦大学 李贤平的《概率论》)可以算得。

相似回答