将N个球随机地放入n个盒子(n>N),求:每个盒子最多有一个球的概率 为什么不选N个盒子呢

将N个球随机地放入n个盒子(n>N),求:每个盒子最多有一个球的概率

为什么不选N个盒子呢 分子上为什么不是C(n N)呢?

先求 N个球随机地放入 n个盒子的方法总数。因为每个球都可以落入 n个盒子中的任何一个,有 n种不同的放法,所以 N个球放入 n个盒子共有 n^N种不同的放法。
每个盒子最多有一个球的放法。第一个球可以放进 n个盒子之一,有n 种放法;第二个球只能放进余下的 n-1个盒子之一,有n -1种放法;...第N个球只能放进余下的n -N+1个盒子之一,有n -N+1种放法;所以共有n (n -1)…(n -N+1)种不同的放法。故得 每个盒子最多有一个球的放法的概率为
n (n -1)…(n -N+1)/n^N追问

我知道正确答案,,但是为什么不用选盒子的方法

追答

还有别的方法。现在有点忘了

温馨提示:内容为网友见解,仅供参考
无其他回答

将N个球随机地放入n个盒子(n>N),求:每个盒子最多有一个球的概率 为什么...
先求 N个球随机地放入 n个盒子的方法总数。因为每个球都可以落入 n个盒子中的任何一个,有 n种不同的放法,所以 N个球放入 n个盒子共有 n^N种不同的放法。每个盒子最多有一个球的放法。第一个球可以放进 n个盒子之一,有n 种放法;第二个球只能放进余下的 n-1个盒子之一,有n -...

将n球放进N个盒子N>n,试求每个盒子至多一个球的可能性,为什么不是CnN...
如果球不同,盒相同,按照插板法(插空法),是将n个球分成N个盒子,每个盒子至少1个,所以一共是在n个球之间的(n-1)个空插(N-1)个板,应该是C(n-1,N-1)。如果球不同,盒不同,还要考虑不同分法下不同盒子里放不同数量的球,所以先把球按照一定顺序排成一列,有A(n,n)种排列...

概率论的问题: 将n只球随机的放入N(N>n)个盒子中去,试求每个盒子至多有...
概率论的问题: 将n只球随机的放入N(N>n)个盒子中去,试求每个盒子至多有一只球的概率。(设盒子的容积不限) 还有一个相同的数学模型,假设每人的生日在一年365天中的任一天是等可能的,即都等于1\/365,那么随机选取n(n≤365)个人,他们的生日各不相同的概率为多少? 展开 1个回答 #热议# 侵犯著作权如何界定?...

...N>=n)个盒子中去,计算每个盒子至多有一个球的概率
1、C(N,n)在N个盒子里面选出n个盒子的所有组合方法 2、n个球放n个盒子,恰好每个盒子一个球的概率:(n的阶乘)\/(n的n次方)3、所以答案=C(N,n)*(n的阶乘)\/(n的n次方)=P(N,n)\/(n的n次方)

...将n球随机的放入N(N≥n)个盒子中去,则每个盒子至多有一只球的概率...
解答:题目的意思很明确,换个思路就是说,我要从N个盒子中挑出n个来,每个里面放一个球。(因为盒子比球多)那么概率应该是C n(上)N(下) = n!\/[N!(N-n)!]

概率问题,把球放到盒子中去,分析的时候为什么使用排列而不使用组合...
假设题意为:将n只球(球无编号)放入N(N>n)个盒子(盒子有编号)任取n个盒子(盒子取后放回,从新选取)中去,试求每个盒子仅放有一个球的概率?(设盒子的容量不限)。解题可以是你那种理解。两套题的限制条件或者区别搞清楚!随机无序与随机有序和样本空间还原与否之区别。你的题限制条件为...

将n只球随机地放入n个盒子中,则每个盒子中恰好有1只球的概率为() 麻 ...
*...*3*2*1\/(n^n)理由:把“将n只球随机地放入n个盒子中”分成n次操作,每次操作把1个球放入n个盒子中,每次有n种放法,故总数是n^n, 第一次符合要求的放法有n种,第二次有(n-1)种,...,第n次只有1种。所以所求概率为n*(n-1)*(n-2)*...*3*2*1\/(n^n)....

将n 只球随机地放入N(n≥N) 盒子,设每个盒子都可以容纳n 只球,求下 ...
解释如下:因为每放入一个球都有m种选择,根据乘法原则,样本点总数为m ^ n。而有效的样本点数,一定是有而且只x个盒子里有球,因此,首先选出x个盒子,即C(m, x),然后,这x个盒子里都至少有一个球,这x个球按什么顺序都行,因此有P(x, x)种可能,最后还剩了(m - x)个球,这些球可以...

...都以1\/N的概率进入每一个盒子中,求至少有一个球不进入指
至少有2只球在同一个盒子中的概率 = 各种概率 - 每只盒子里最多只有一只球 n =1 - C m (即排列组合运算 m 中 取 n )

将N个球随机放入n个盒中,求每个盒中至少放入一个球的概率
总体中的基本事件是把第1个球放入n个 盒子有n种,其他球也一样共 有N个n相乘有n^N种 包含事件A的基本事件是:将N个球全排有N!种,再将(n-1)块板将此隔开有C(N,n-1)种 共有N!*C(N,n-1)P(A)=N!*C(N,n-1)\/n^N 如果答案对不上你的课后答案的话,可能是你没有说清楚球是...

相似回答