求排列与组合的典型例题

如题所述

http://219.226.9.43/Resource/GZ/GZSX/DGJC/DS/D9/tbjx0152zw_09_0003.htm

例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法。

解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。
(2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。
(3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:
3×5+3×6+5×6=63(种)。

例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射?

分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。”
因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=53(种)。

2.排列数与组合数的两个公式
排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。
连乘积的形式 阶乘形式

∴ 等式成立。

评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形过程得以简化。

例4.解方程

解:原方程可化为:
解得x=3。

评述:解由排列数与组合数形式给出的方程时,在脱掉排列数与组合数的符号时,要注意把排列数与组合数定义中的取出元素与被取元素之间的关系以及它们都属自然数的这重要限定写在脱掉符号之前。

3.排列与组合的应用题
历届高考数学试题中,排列与组合部分的试题主要是应用问题。一般都附有某些限制条件;或是限定元素的选择,或是限定元素的位置,这些应用问题的内容和情景是多种多样的,而解决它们的方法还是有规律可循的。常用的方法有:一般方法和特殊方法两种。
一般方法有:直接法和间接法。
(1)在直接法中又分为两类,若问题可分为互斥各类,据加法原理,可用分类法;若问题考虑先后次序,据乘法原理,可用占位法。
(2)间接法一般用于当问题的反面简单明了,据的原理,采用排除的方法来获得问题的解决。
特殊方法:
(1)特元特位:优先考虑有特殊要求的元素或位置后,再去考虑其它元素或位置。
(2)捆绑法:某些元素必须在一起的排列,用“捆绑法”,紧密结合粘成小组,组内外分别排列。
(3)插空法:某些元素必须不在一起的分离排列用“插空法”,不需分离的站好实位,在空位上进行排列。
(4)其它方法。

例5.7人排成一行,分别求出符合下列要求的不同排法的种数。
(1)甲排中间; (2)甲不排两端;(3)甲,乙相邻;
(4)甲在乙的左边(不要求相邻); (5)甲,乙,丙连排;
(6)甲,乙,丙两两不相邻。

解:(1)甲排中间属“特元特位”,优先安置,只有一种站法,其余6人任意排列,故共有:1×=720种不同排法。
(2)甲不排两端,亦属于“特元特位”问题,优先安置甲在中间五个位置上任何一个位置则有种,其余6人可任意排列有种,故共有·=3600种不同排法。
(3)甲、乙相邻,属于“捆绑法”,将甲、乙合为一个“元素”,连同其余5人共6个元素任意排列,再由甲、乙组内排列,故共有·=1400种不同的排法。
(4)甲在乙的左边。考虑在7人排成一行形成的所有排列中:“甲在乙左边”与“甲在乙右边”的排法是一一对应的,在不要求相邻时,各占所有排列的一半,故甲在乙的左边的不同排法共有=2520种。
(5)甲、乙、丙连排,亦属于某些元素必须在一起的排列,利用“捆绑法”,先将甲、乙、丙合为一个“元素”,连同其余4人共5个“元素”任意排列,现由甲、乙、丙交换位置,故共有=720种不同排法。
(6)甲、乙、丙两两不相邻,属于某些元素必须不在一起的分离排列,用“插空法”,先将甲、乙、丙外的4人排成一行,形成左、右及每两人之间的五个“空”。再将甲、乙、丙插入其中的三个“空”,故共有
=1440种不同的排法。

例6.用0,1,2,3,4,5这六个数字组成无重复数字的五位数,分别求出下列各类数的个数:
(1)奇数;(2)5的倍数;(3)比20300大的数;(4)不含数字0,且1,2不相邻的数。

解:(1)奇数:要得到一个5位数的奇数,分成3步,第一步考虑个位必须是奇数,从1,3,5中选出一个数排列个位的位置上有种;第二步考虑首位不能是0,从余下的不是0的4个数字中任选一个排在首位上有种;
第三步:从余下的4个数字中任选3个排在中间的3个数的位置上,由乘法原理共有=388(个)。

(2)5的倍数:按0作不作个位来分类
第一类:0作个位,则有=120。
第二类:0不作个位即5作个位,则=96。
则共有这样的数为:=216(个)。

(3)比20300大的数的五位数可分为三类:
第一类:3xxxx, 4xxxx, 5xxxx有3个;
第二类:21xxx, 23xxx, 24xxx, 25xxx, 的个;
第三类:203xx, 204xx, 205xx, 有个,
因此,比20300大的五位数共有:=474(个)。

(4)不含数字0且1,2不相邻的数:分两步完成,第一步将3,4,5三个数字排成一行;第二步将1和2插入四个“空”中的两个位置,故共有=72个不含数字0,且1和2不相邻的五位数。

例7.直线与圆相离,直线上六点A1,A2,A3,A4,A5,A6,圆上四点B1,B2,B3,B4,任两点连成直线,问所得直线最多几条?最少几条?

解:所得直线最多时,即为任意三点都不共线可分为三类:
第一类为已知直线上与圆上各取一点连线的直线条数为=24;
第二类为圆上任取两点所得的直线条数为=6;
第三类为已知直线为1条,则直线最多的条数为N1=++1=31(条)。
所得直线最少时,即重合的直线最多,用排除法减去重合的字数较为方便,而重合的直线即是由圆上取两点连成的直线,排除重复,便是直线最少条数:N2=N1-2=31-12=19(条)。
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-12-04
1. 5个不同的小球放入3个不同的盒子里面,第1个盒子放1个,第2个和第3个盒子各放2个,有多少种不同的方法?
解:设5个小球分别为A、B、C、D、E ,三个盒子分别为①、②、③
从5个小球种选出1个放入第1个盒子里有C(5,1)种方法,从剩下的4个小球中选出2个放入第2个盒子里面有,C(4,2)种方法,把剩下的2个球放入剩下的1个盒子里,有1种方法,所以共有,C(5,1)·C(4,2)=30种方法。
5个不同的小球放入3个不同的盒子中,若有两个盒子各放2个,1个盒子放1个,有多少种不同的放法?
2.解:设5个小球分别为A、B、C、D、E ,三个盒子分别为①、②、③
从3个盒子中选1个盒子放1个球有C﹙3,1﹚种方法,从5个球中选择1个放进去有,C(5,1)·种
方法,从剩下的4个球中选择2个放进剩下的2个盒子中的1个里面有C(4,2)种方法,把
剩下的2个球放进剩下的1个盒子中有1种方法,所以共有C﹙3,1﹚C(5,1)·C(4,2)=90种方法。
3. 5个不同的小球放入3个不同的盒子中,若每个盒子至少放1个,有多少种不同的放法?
解:设5个小球分别为A、B、C、D、E ,三个盒子分别为①、②、③

4. 5个不同的小球分成3组,有1组有1个球,2组各2个球,有多少种分法?
解:先按例1做,即“5个不同的小球放入3个不同的盒子里面,第1个盒子放1个,第2个和
5. 5个相同的小球放入3个不同的盒子中,每个盒子至少放1个,有多少种方法?
解:“挡板法”是专门用来解决同时满足“小球相同”、“盒子不同”、“每个盒子至少放1个”
3个条件的问题的。具体操作如下:
设三个盒子分别为①、②、③,5个相同的小球如下放置,中间产生4个空,在4个空中选出2个空插入2个“板子”,把小球分成3部分,最左边部分放入盒①,中间部分放入盒②,最右边部分放入盒③。如图所示的放置方法,①、②、③种分别放1个、3个、1个。所以共有种放法。

求一些关于高中排列和组合的经典例题。急!!
正解:8个小球排好后对应着8个位置,题中的排法相当于在8个位置中选出3个位置给红球,剩下的位置给白球,由于这3个红球完全相同,所以没有顺序,是组合问题.这样共有:排法. 3重复计算出错 在排列组合中常会遇到元素分配问题、平均分组问题等,这些问题要注意避免重复计数,产生错误。 例4(2002年北京文科高考题)5本...

求排列组合问题经典例题
第一个肯定是甲,最后一个肯定是甲。第2,和倒数第二都不是甲。传球:甲-不是甲-X-X-不是甲-甲。中间的可能有3种,不是甲-甲,甲-不是甲,不是甲-不是甲,第一种情况:甲-不是甲-不是甲-甲-不是甲-甲=3*2*1*3=18。第二种情况:甲-不是甲-甲-不是甲-不是甲-甲=3*1*3*2...

如何计算高中数学中的排列组合
\\]其中n!代表n的阶乘,即从1乘到n。2. **组合(Combination)**:组合是指从n个不同元素中取出m(m≤n)个元素,但与排列不同的是,组合不考虑元素的顺序。组合的数目用符号C(n,m)表示,计算公式为:\\[C(n,m) = \\frac{A(n,m)}{m!} = \\frac{n!}{m!(n-m)!} \\]例题:假设...

关于排列 组合的问题
本例是属于“某些元素‘相邻’或‘不相邻’的一种排列题型。“相邻”则将这要求“相邻”的m个元素捆绑起来看成一个整体(一个大元素)与另外(n-m)个元素进行全排列,再乘以这m个元素自身的全排列数即 种排法;“不相邻”,一般用插空法来解,即先将另外p(P≥m-1)个元素排好,留出(p+1)个空挡,再让这不能...

高中数学人教版“排列与组合”不会啊!求详解!
排列组合公式 排列定义 从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。组合定义 从n个不同元素...

数学排列组合题目,高手请进,在线等。谢谢! 从3个0,4个1,5个2中挑选5...
这题是设陷阱的,如果按照题中说的,先选数、再排列,几乎不可能算出来。来简化一下先~1、说到底,就是由0、1、2组成的5位数。先全部找出来。万位有2种可能,千位有3种可能,以此类推,所以总数为:2×3×3×3×3=1622、既然最多只有3个0,4个1,5个2,那么这些数中,有哪些不符合要求呢?显然,5个1是不...

小兔吃萝卜有多少种走法?一年级小兔吃萝卜
小兔按1到9吃萝卜有362880种走法。一共9个萝卜,按排列组合来算,第一次有9个选择,吃完第一个后第二次剩下8个萝卜,所以有8个选择,第三次就是7个,第四次选择为6个,以此类推,走法为9乘以8乘以7乘以6等直到乘到1为止,计算出来的总数即为总走法,可计算得出为362880。排列组合是组合学...

现有四名即将毕业的大学生和四个不同的单位,大学生必须全部分配出去...
排列、组合的概念和公式典型例题分析例1 设有 3 名学生和 4 个课外小组.(1)每名学生都只参加一个课外小组;(2)每 名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加 4 个课外小组中的任何一个,而不限制每个课外小组的 人数,因此共有 种不同...

数学排列组合中的隔板
典型例题如:9个相同的球分入ABC三个盒子。每个盒子至少一个。转化为8个间隙中插入2个板,共C(2,8)=28种方法。注意其要求元素相同而盒子不同。

...请问四个电池都撑了一年的概率。用排列组合
90%*90%*90%*90%=65.61

相似回答