5个盒子三本书有多少种方法

如题所述

是排列组合的题,给三本书编号1.2.3,第一本书放在五个抽屉里有5种选法,第二本书有四种,第三本书有3种,所以选法有5×4×3=60(种)。
扩展资料
数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
数学分支
1. 数学史
2. 数理逻辑与数学基础
a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。
3. 数论
a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。
4. 代数学
a:线性代数,b:群论,c:域论,d:李群,e:李代数,f:Kac-Moody代数,g:环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),h:模论,i:格论,j:泛代数理论,k:范畴论,l:同调代数,m:代数K理论,n:微分代数,o:代数编码理论,p:代数学其他学科。
5. 代数几何学
6. 几何学
a:几何学基础,b:欧氏几何学,c:非欧几何学(包括黎曼几何学等),d:球面几何学,e:向量和张量分析,f:仿射几何学,g:射影几何学,h:微分几何学,i:分数维几何,j:计算几何学,k:几何学其他学科。
资料来源于网络若侵权联系删除
温馨提示:内容为网友见解,仅供参考
无其他回答

5个盒子三本书有多少种方法
是排列组合的题,给三本书编号1.2.3,第一本书放在五个抽屉里有5种选法,第二本书有四种,第三本书有3种,所以选法有5×4×3=60(种)。

五本书放入三个盒子且每个盒子不能为空有多少种放法?
解:5二1十2十2二1+1十3,有122,212,221对三个盒子三种方法,同样有113,311,131对三个盒子三种方法,综上共有6种方法。

...球放入5个不同盒子,每个盒子至多放1个,有 种方法.
把3个不同的小球分别放入5不同的盒子里(每个盒子至多放一个球),实际上是从5个位置选3个位置用3个元素进行排列,共有A53=60种结果,故答案为:60.点评:本题考查排列组合及简单计数问题,本题解题的关键是看出条件中所给的数学问题,实际上就是一个排列,利用排列数来表示出结果,本题是一个基...

一个盒子有三本书,一本书125页,请问5个盒子内的书共有多少页?多少
答:5个盒子内的书一共有1875页。希望能够帮到你,还望采纳谢谢!

6.0.0.5.2.1.排列组合有多少种?
一、优限法 题目特征与解题方法:特殊元素,优先处理;特殊位置,优先考虑。【例】甲乙丙丁戊5个同学排成一排,甲同学不在边上的不同排列方式有多少种?题目特征与解题方法:有元素要求相邻,将要求相邻元素进行捆绑,当做一个整体,再和其他元素共同排列。三、插空法 题目特征与解题方法:有元素要求不...

小学数学,有5块巧克力,全部分给三个人,有几种分法
甲 乙 丙 5 0 0 4 1 0 4 0 1 3 2 0 3 1 1 3 0 2 2 3 0 2 2 1 2 1 2 2 0 3 1 4 0 1 3 1 1 2 2 1 1 3 1 0 4 0 5 0 0 4 1 0 3 2 0 2 3 0 1 4 0 0 5 共1+2=3+4+5+6=21(种)方法 ...

排列组合
解:由题意,必有一个盒内有2个球,同一盒内的球是组合,不同的球放入不同的盒子是排列。因此,有C42A43=144种放法。 练习2 由数字1,2,3,4,5,6,7组成有3个奇数字,2个偶数字的五位数,数字不重复的有多少个? 答案:有C43C32A55=1440(个) 三、元素相邻,整体处理 对于某些元素要求相邻排列的问题,可先将...

排列组合问题
分配到高三年级的6个班中,将是相同元素的分配问题,常用的方法是采用“隔板法”;解:6个班分10个名额,用5个隔板,将10个名额并成一排,,名额之间有9个空隙,将5个隔板插入9个空中,则每种插法对应一种方案,共有 中不同的分配方案;变式练习:将6个相同的小球放进三个不同的盒子,...

数学运算排列,组合公式
两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。 例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。

插空法写作文
把3本数学书“捆绑”在一起看成一个整体,2本外语书也“捆绑”在一起看成一个整体,与其它3本书一起看作5个元素,共有A(5,5)种排法;又3本数学书有A(3,3)种排法,2本外语书有A(2,2)种排法;根据分步计数原理共有排法A(5,5)A(3,3)A(2,2)=1440(种).例题:6个球放进5个盒子,有多少种不同的...

相似回答