四个不同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法共有几种

答案我看懂了 但我想知道我的方法错在哪里?
第一步:取一个球任选一个盒子放入 4种方法
第二步:再取一个球任选剩余三个盒子放入 3种方法
第三步:最后两球只能放进同一个盒子 就一种方法
共12种 哪不对?

第1个回答  2011-05-08
第一步:取一个球任选一个盒子放入 4种方法
第二步:再取一个球任选剩余三个盒子放入 3种方法
第三步:再取一球任选剩余两个盒子放入 2种方法
第四步:最后一球在之前三个盒子里选一个放入 3种方法
于是共有4*3*2*3=72种追问

哈哈 你也不对 答案是144

第2个回答  2011-05-08
球不同盒子也不同,它们是双向选择的,你只考虑到了球不同并没考虑到盒子的不同。本回答被提问者采纳
第3个回答  2011-05-08
对的

偶素白痴,向各位大虾请教排列组合(在线急等)
4个不同的小球放入编号为1、2、3、4的四个盒内,则恰有一个空盒的放法有几种?解:由题意,必有一个盒内有2个球,同一盒内的球是组合,不同的球放入不同的盒子是排列。因此,有C42A43=144种放法。练习2 由数字1,2,3,4,5,6,7组成有3个奇数字,2个偶数字的五位数,数字不重复...

四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法...
由题意,四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列故共有C42A43=144种不同的放法.故选D

把四种不同的小球放入编号为1.2.3.4的四个盒子中,则恰有一个空盒的方...
显然,其中一个盒子一定有两个球 先在4个球中取两个球,有c(4 2)=6种可能 把这两个球看成整体,那么问题可以转化成3个球放入4个盒的排列,即A(4 3)=24 所以共有6*24=144种可能

...把四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒...
所以恰好有一个空盒的放法,就是将分好组的小球放进3个盒子中,一共有 C(4,2)P(4,3)=144种

...同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有...
有 种不同的放法.共有6×24=144种不同的放法.名师点金:在排列组合综合问题中,一般是先选后排,先分组后排序,注意分组时,若是平均分组,则应注意组数之间的顺序问题,如上面的解答中,剩下的两个小球分成两组,若采用 算法,则将分成的两组之间排了一次顺序,因此还要除以两组之间的排列 .

4个不同的小球放入编号为1,2,3,4的4个盒子里 恰有一个空盒的方法有多 ...
有一个空盒,先选1个空盒,有C(4,1)种方法 剩下的3个盒子,第一个盒子有4种方法,二个有3种,三个有2种,最后一个有3种 所以一共有‘C(4,1)×4×3×2×3=252种

四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰好有一个空盒的...
有一个空盒;将四个不同的小球分成三组有C4取2,6种;在编号为1,2,3,4的四个盒选三个有4种,n=6*4*3*2*1=144

4个不同的小球放入编号1 2 3 4 的4个盒中 问恰有一个盒是空的共有多少...
因恰有一空盒,故必有一盒子放两球.1)选:从四个球中选2个有C42 种(C42为上面2下面4写不出来,就是4*3\/2=6),从4个盒中选3个盒有C43 种(C43=C41=4);2)排:把选出的2个球看作一个元素与其余2球共3个元素,对选出的3盒作全排列有A33 种(3*2*1=6),故所求放法有6*4*6=...

排列与组合:4个不同小球放入编号分别为1,2,3,4的四个盒子,恰有一个
四个盒子有1个空的,说明剩下3个盒子有1个装2个球,有2个各装1个球。A(4,4)×C(4,2)×C(2,1)×C(1,1)=(4×3×2×1)×(4×3÷2)×2×1=288,一共288种排列。先排列4个盒子,然后第一个盒子取2个球,第2个盒子取1个球,第3个盒子取1个球,第4个盒子不装。

四个不同的小球放入编号为1234的四个盒子中则恰有一个空盒的方法...
∵恰有一个空盒,则这4个盒子中只有3个盒子内有小球,且小球数只能是1、1、2.先从4个小球中任选2个放在一起,有C24种方法,然后与其余2个小球看成三组,分别放入4个盒子中的3个盒子中,有A34种放法.∴由分步计数原理知共有C24A34=144种不同的放法....

相似回答