四个不同的小球放入编号为1,2,3,4的四个盒子里,则恰好有一个空盒的放法有多少种

四个不同的小球放入编号为1,2,3,4的四个盒子里,则恰好有一个空盒的放法有多少种
希望有分析过程
答案是72种
想知道过程,怎么做的?

选出一个空盒有4中,再从四个小球中选出两个看成一组,有6种。最后剩余的3个盒子与分成的三组小球排列组合有1*2*3=6种,故共有4*6*6=144中
温馨提示:内容为网友见解,仅供参考
第1个回答  2009-04-27
首先四选一,有四种,其次四选二有六种方法,然后三三对应,有六种,相乘就可以来了。
第2个回答  2019-11-13
有一个空盒;将四个不同的小球分成三组有c4取2,6种;在编号为1,2,3,4的四个盒选三个有4种,n=6*4*3*2*1=144

四个不同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有...
144 先将4个小球分成4份,其中一份有2个小球,一份有0个小球,另两个各是一份,有 种不同的分组方法,再将这4份放到4个不同的盒子中,有 种不同的放法.共有6×24=144种不同的放法.名师点金:在排列组合综合问题中,一般是先选后排,先分组后排序,注意分组时,若是平均分组,则应注意组数之...

四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法...
由题意,四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列故共有C42A43=144种不同的放法.故选D

...把四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒...
所以恰好有一个空盒的放法,就是将分好组的小球放进3个盒子中,一共有 C(4,2)P(4,3)=144种

把四种不同的小球放入编号为1.2.3.4的四个盒子中,则恰有一个空盒的方...
显然,其中一个盒子一定有两个球 先在4个球中取两个球,有c(4 2)=6种可能 把这两个球看成整体,那么问题可以转化成3个球放入4个盒的排列,即A(4 3)=24 所以共有6*24=144种可能

4个不同的小球放入编号为1,2,3,4的4个盒子里 恰有一个空盒的方法有多 ...
有一个空盒,先选1个空盒,有C(4,1)种方法 剩下的3个盒子,第一个盒子有4种方法,二个有3种,三个有2种,最后一个有3种 所以一共有‘C(4,1)×4×3×2×3=252种

四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰好有一个空盒的...
有一个空盒;将四个不同的小球分成三组有C4取2,6种;在编号为1,2,3,4的四个盒选三个有4种,n=6*4*3*2*1=144

...放入编号为1、2、3、4的四个盒子里,则恰好有一个盒子是空盒的放法...
先把4个乒乓球分成3组,必有一组有2个,其余两组各一个,有C42=6种方法;在编号为1、2、3、4的四个盒子里,任取3个,有C43=4种方法;将3组乒乓球对应取出的3个盒子,有A33=6种方法,则恰好有一个盒子空的放法有6×4×6=144种;故选D.

排列与组合:4个不同小球放入编号分别为1,2,3,4的四个盒子,恰有一个
四个盒子有1个空的,说明剩下3个盒子有1个装2个球,有2个各装1个球。A(4,4)×C(4,2)×C(2,1)×C(1,1)=(4×3×2×1)×(4×3÷2)×2×1=288,一共288种排列。先排列4个盒子,然后第一个盒子取2个球,第2个盒子取1个球,第3个盒子取1个球,第4个盒子不装。

4个不同的苹果放入编号为1,2,3,4的四个盒中,恰有一个空盒的放法种数为...
解 当有1个空的时候 4个苹果可以放在另外的3个盒子里面 因为苹果不相同另外的3个盒子都要有先从4个里面选2个绑定 再整体看成3个排列 所以放法有 C(4,2)*P(3,3)=4x3\/2x3x2x1=36种 空盒子有4种选择 所以一起有 4x36=144种

四个不同的球放入编号为1234的四个盒中,则恰有一个空盒的方法有...
先将4个球分成3堆1,1,2 从中取任取2个为一堆,其它2个各为一堆 有C4,2=6种分法 再把3堆放入4各盒子 第一堆有4种放法,第二堆有3种放法,第三堆有2种放法 即P4,3=24种 所以总分法为6*24=144种 所以恰有一个空盒的方法有144种 ...

相似回答