数学问题:把四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有多少种?

如题所述

将小球分为任意3组的分法有C(4,2)=6种,
所以恰好有一个空盒的放法,就是将分好组的小球放进3个盒子中,一共有
C(4,2)P(4,3)=144种
温馨提示:内容为网友见解,仅供参考
第1个回答  2010-04-27
C(4,2)*P(3,3)

数学问题:把四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一...
将小球分为任意3组的分法有C(4,2)=6种,所以恰好有一个空盒的放法,就是将分好组的小球放进3个盒子中,一共有 C(4,2)P(4,3)=144种

四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法...
由题意,四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列故共有C42A43=144种不同的放法.故选D

...放入编号为1.2.3.4的四个盒子中,则恰有一个空盒的方法共有___种...
显然,其中一个盒子一定有两个球 先在4个球中取两个球,有c(4 2)=6种可能 把这两个球看成整体,那么问题可以转化成3个球放入4个盒的排列,即A(4 3)=24 所以共有6*24=144种可能

四个不同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有...
144 先将4个小球分成4份,其中一份有2个小球,一份有0个小球,另两个各是一份,有 种不同的分组方法,再将这4份放到4个不同的盒子中,有 种不同的放法.共有6×24=144种不同的放法.名师点金:在排列组合综合问题中,一般是先选后排,先分组后排序,注意分组时,若是平均分组,则应注意组数之...

...2,3,4的四个盒子中,则恰好有一个空盒的放法种数为多少?
有一个空盒;将四个不同的小球分成三组有C4取2,6种;在编号为1,2,3,4的四个盒选三个有4种,n=6*4*3*2*1=144

把4个颜色各不相同的乒乓球随机的放入编号为1、2、3、4的四个盒子里...
试题分析:这是古典概型,我们只要计算出两个数,一个是把4个不同的球随机放入四个不同的盒子的所有放法总数为 ,而恰好有一个盒子是空的方法为 ,从而所求概率为 .

把4个颜色各不相同的乒乓球随机地放入编号为1、2、3、4的四个盒子里...
先把4个乒乓球分成3组,必有一组有2个,其余两组各一个,有C42=6种方法;在编号为1、2、3、4的四个盒子里,任取3个,有C43=4种方法;将3组乒乓球对应取出的3个盒子,有A33=6种方法,则恰好有一个盒子空的放法有6×4×6=144种;故选D.

4个不同的小球放入编号为1,2,3,4的4个盒子里 恰有一个空盒的方法有多 ...
有一个空盒,先选1个空盒,有C(4,1)种方法 剩下的3个盒子,第一个盒子有4种方法,二个有3种,三个有2种,最后一个有3种 所以一共有‘C(4,1)×4×3×2×3=252种

...的放入编号为1,2,3,4的四个盒子里,则恰好有一个盒子空的概率是_百...
全部情况是4^4 满足条件的情况,必须有两个球放在同一个盒子里 因此应该选出两个球,C(4,2),然后将两个球看成一个整体,然后选取一个空的盒子,C(4,1) 剩下的三个盒子全部排列组合乘以A(3,3)因此答案为 C(4,2)C(4,1)A(3,3)\/4^4=6^6\/256=9\/16 ...

排列与组合:4个不同小球放入编号分别为1,2,3,4的四个盒子,恰有一个
四个盒子有1个空的,说明剩下3个盒子有1个装2个球,有2个各装1个球。A(4,4)×C(4,2)×C(2,1)×C(1,1)=(4×3×2×1)×(4×3÷2)×2×1=288,一共288种排列。先排列4个盒子,然后第一个盒子取2个球,第2个盒子取1个球,第3个盒子取1个球,第4个盒子不装。

相似回答