12个相同的小球放入编号为1,2,3,4的盒子中,每个盒子可空,问有几种方法

需要注意的是,每个小球都一样,而且盒子可空。

第1个回答  2010-06-29
16*15*14/(3*2*1)=560

...12个相同的小球放入编号为1,2,3,4的盒子中,每盒可空,问不同的放法...
(1)可以放三个4,一个0 (2)因为盒子是不同的元素,而小球是相同的元素,因此这里只关心各个盒子里求的数量,下面介绍一个公式定理以后就不用隔板法了,n个相同的小球放入k个不同的盒子(允许空)的方法相当于x1+x2+...+xk=n的非负整数解个数 而其个数即为C(n+k-1取n)

12个相同的球放到编号为1 2 3 4的4个盒子中,有多少种情况?求解析。若每...
答:允许空盒,有455种不同的放法.(2)将12个小球排成一排,中间有11个间隔,在这11个间隔中选出3个,放上“隔板”,若记作“|”看作隔板,则如图00|0000|0000|00隔板将一排球分成四块,从左到右可以看成四个盒子放入的球数,即上图中1,2,3,4四个盒子相应放人2个,4个,4个,2...

12个相同的小球放入编号为1,2,3,4的盒子中没要求每个盒子的小球数不小于...
10种 首先题目要求编号不可以少于小球数 所以1 2 3 4 四个盒子加起来最少要放10个小球,下了就有两个小球放到四个盒子 有两种方法 一个是 C42 和一个是C41 总共10种

把12个小球放入编号分别为1 2 3 4的四个盒子里,每个盒子至少有一个小球...
1.4个球全部放入一个盒子里,有8种放法;2.4个球分别放入两个盒子里,先选择两个盒子C(8,2),再放球,有13,22,31三种放法,共 C (8,2)*3=84种放法;3.4个球分别放入三个盒子里,先选择三个盒子C(8,3),再放球,有121,211,112三种放法,共 C (8,3)*3=168种...

...的小球放入编号为1.2.3.4的四个盒子中,则恰有一个空盒的方法共有...
显然,其中一个盒子一定有两个球 先在4个球中取两个球,有c(4 2)=6种可能 把这两个球看成整体,那么问题可以转化成3个球放入4个盒的排列,即A(4 3)=24 所以共有6*24=144种可能

编号为1234的四个小球放到
根据题目的条件,我们需要保证每个盒子中至少有一个小球。因此,我们可以采用以下方法:将编号为1的小球放入A盒子中,将编号为2的小球放入B盒子中,将编号为3的小球放入C盒子中,将编号为4的小球放入D盒子中。这样,每个盒子中都有一个小球,并且满足了题目的要求。编号的作用:1、组织信息:编号的首要...

[高中数学]编号为1、2、3、4的四个小球放入标好为1、2、3、4的四个盒...
第一个球有三种放法,放入第一个球后第二个球有两种放法,放入第二个球后第三个球有一种放法,放入第三个球后第四个球有一种放法,所以由乘法原理,共有3*2*1*1=6种放法

10个相同的小球,放入编号为1,2,3的三个盒子里,要求每个盒子的球数不...
根据题意,先在编号为2、3的三个盒子中分别放入1、2个小球,编号为1的盒子里不放;再将剩下的7个小球放入3个盒子里,每个盒子里至少一个;共:C26=6×52×1=15(种);即可得符合题目要求的放法共15种.故答案为:15.或另一种解法:一号箱的放法有五种:1,2,3,4,5.分别谈论,当...

把10个相同的球放入编号为1,2,3的三个盒子中,使得每个盒子中的球数...
先放1,2,3的话,那么还剩下4个球,4个球放到3个不同的盒子里,情况有:0,0,4,分别在1,2,3号盒子中的任意一个中放4个,共3种情况;0,1,3,分别在1,2,3号盒子中的任意两个中放3个和1个,共6种情况;0,2,2,分别在1,2,3号盒子中的任意两个中放2个,共3种情况;1...

把15个相同的小球放入编号为1,2,3的三个不同盒子中,使盒子里的球的个...
共3种放法;若1号盒中小球的个数为7,三号中至少有四个球,所以此时二号盒中有球数可能为3到4个,共2种放法;若1号盒中小球的个数为8,三号中至少有四个球,所以此时二号盒中有球数只能为3个,共1种放法;综上,不同的放法种数是7+6+5+4+3+2+1=28种故选C ...

相似回答