由题意知四个不同的小球全部随意放入三个不同的盒子中,则必须有1个盒子里放2个球,其余的三个盒子各放1个,
首先要从4个球中选2个作为一个元素,有C 4 2 种结果,
同其他的两个元素在三个位置全排列有A 3 3 种情况,
根据分步乘法原理知共有C 4 2 A 3 3 =36;
故选B.
四个不同的小球全部随意放入三个不同的盒子中,使每个盒子都不空的放法...
由题意知四个不同的小球全部随意放入三个不同的盒子中,则必须有1个盒子里放2个球,其余的三个盒子各放1个,首先要从4个球中选2个作为一个元素,有C42种结果,同其他的两个元素在三个位置全排列有A33种情况,根据分步乘法原理知共有C42A33=36;故选B.
4个不同的球放到3个不同盒子,每个盒子至少放1个球,有几种方法
四个不同的小球全部随意放入三个不同的盒子中,每个盒子最少一个,需要先要从4个球中选2个作为一个元素,有C42种结果,同其他的两个元素在三个位置全排列,根据乘法原理得到结果.解答:解:由题意知四个不同的小球全部随意放入三个不同的盒子中,每个盒子最少一个,首先要从4个球中选2个作为一...
四个不同的小球全部随意放入3个不同的盒子里,使每个盒子都不空的放法...
即4个小球不同,分成3组的不同分法为4个小球选2个,其它各1;或4个小球选1个,其它一个为空,一个为3个。(6+4=10为组合问题)盒子不同的排列方式为3*2=6(排列问题)二者乘积为总放法数。若每个盒子不能为空,则为6*6=36种
四个不同的小球全部放入三个不同的盒子中,使每个盒子都不空的方法...
解答:相当于有两个球在一起。先将4个球的两个球看成一个整体,有C(4,2)种方法,这样就有3堆球,放入三个盒子,共有A(3,3)种方法 共有C(4,2)*A(3,3)=6*6=36种方法。
有红黄蓝绿四个不同的颜色的小球把它放在三个盒子中不管怎么放至少有一...
四个不同的小球全部随意放入三个不同的盒子中,每个盒子最少一个,需要先要从4个球中选2个作为一个元素,有C42种结果,同其他的两个元素在三个位置全排列,根据乘法原理得到结果。解:由题意知四个不同的小球全部随意放入三个不同的盒子中,每个盒子最少一个 首先要从4个球中选2个作为一个元素...
...四种颜色不同的小球全部随意放入三个不同的盒子中,使每个盒子都不空...
4个求,3个盒子,且都为空 则有一个盒子是有2个球的。就是四选二:C(4)2=6,再这种情况对三个盒子都可能所以再乘3 再剩下2个盒子分别一个 就是2种情况了 所以一共6*3*2=36
四种颜色不同的小球全部随机放入三个不同的盒子中,使每个盒子都不空大神...
因为有个盒子有两个球,所以要把四个球分三份C4.2(捆绑法),再把三份球放入三个盒中A3.3所以就是A3.3*C4.2等于36种。欢迎采纳
四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的...
法一:从四个中选三个应该是C43而不是A43 再从三个盒子中选一个放剩下的一个球C31 C43C31=36 法二:或者可以这么求,从四个球里面选两个放入其中的一个盒子:C42*C31=18 另外两个球放入剩下的两个盒子中:A22=2 求得36种
4个不同的小球放进3个不同的盒子里,恰好有一个空盒子,多少种方法?
第一步:在四个盒子中任选一个做为空盒子,由C(4,1)=4种不同的选择;第二步:将3个盒子排成一排,4个小球任意选3个分别放进3个盒子中,有A(4,3)=4*3*2=24种不同的方法;第三步:在3个盒子中任选1个放进最后1个小球,共3种方法。因此本问题共有4*24*3=288种不同的方法。
排列组合 将4个不同的小球放入3个不同的盒子,其中每个盒子都不放空的...
解答:按照要求,最后有1个盒子有两个球,另外两个盒子1个球。∴ 先将4个球中的两个合成一个整体,有C(4,2)=6种,然后将3组球放入3个不同的盒子,是排列问题,有A(3,3)=6种,∴ 共有 6*6=36种放法。