高数求极限的问题

这个答案是1,为什么我这种做法不对呢

这不是1∞型

lim(1+1/n)^n=e

正确答案,如图所示

有任何疑惑,欢迎追问

温馨提示:内容为网友见解,仅供参考
第1个回答  2020-10-08

根据第二个重要极限

lim(x->0)(1+x-1)^[1/(x-1)]*[(x-1)/x]=e

题目中的极限是∞

本回答被网友采纳
第2个回答  2020-10-08
(1+x)^(1/x)当x趋于0时极限是e,不是无穷大
第3个回答  2020-10-08
1. 代入法, 分母极限不为零时使用.先考察分母的极限,分母极限是不为零的常数时即用此法.
2.倒数法,分母极限为零,分子极限为不等于零的常数时使用.
3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用.
4. 消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用.可利用平方差、立方差、立方和进行有理化.
5. 零因子替换法.利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用.常配合利用三角函数公式.
6. 无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质.

高数,求极限
1、关于高数求极限问题见上图。2、这个高数第一题求极限,用第二个重要极限可以求出。3、第二题求极限,0代入后,极限可以求出。4、第四题求极限,用第一个重要极限可以求出。或等价无穷小代换。5、第五题求极限,先分解因式和化简后,极限可以求出。

高数求极限问题,求讲讲思路
1) 原极限 = lim{x->0} [e^x f'(e^x - 1) - f'(x)]\/(3x^2)= lim{x->0} [e^2x f''(e^x - 1) + e^x f'(e^x - 1) - f''(x)]\/(6x)= lim{x->0} [e^3x f'''(e^x - 1) + e^2x f'(e^x - 1) - f''(x)]\/6 = lim{x->0} [e^3x f...

高数,求极限问题。
方法如下,请作参考:

高数求极限的问题
所以用洛必达法则,极限=2\/3 * sin(x)\/x = 2\/3。分子这种形式的导数(从g(x)到h(x)的积分 f(t)dt),对于x的导数就是f(h(x)) × h'(x)-f(g(x)) × g'(x)。

高数求极限题,答案看不懂,结果应该是整数啊?
lim(x->-无穷) [√(x^2+x) -x]y=-x =lim(y->+无穷) [√(y^2-y) +y]分子分母同时乘以 [√(y^2-y) -y]=lim(y->+无穷) [√(y^2-y) +y].[√(y^2-y) -y]\/[√(y^2-y) -y]=lim(y->+无穷) [(y^2-y) -y^2]\/[√(y^2-y) -y]=lim(y->+无穷) -...

高数求极限问题,下图里这三道题解答过程都看不懂,麻烦高手讲解一下...
=lim(x->α) cosx =cosα (7)√(x^2+x) - √(x^2-x)=[√(x^2+x) - √(x^2-x)] . [√(x^2+x) + √(x^2-x)]\/[√(x^2+x) + √(x^2-x)]= 2x\/[√(x^2+x) + √(x^2-x)]lim(x->∞) [√(x^2+x) - √(x^2-x) ]=lim(x->∞) 2x\/[√(x...

高数极限的问题
\/(x^1\/n-1)可令x=y^mn 得:=n\/m.利用两个重要极限来求极限。(1)lim sinx\/x=1 x->0 (2)lim (1+1\/n)^n=e n->∞ 1、利用单调有界必有极限来求!2、利用函数连续得性质求极限 3、用洛必达法则求,这是用得最多得。4、用泰勒公式来求,这用得也十很经常得。

几道高数求极限题目,求解
2、令√x=u,则原极限化为:原式=lim[u→1] (u^4-u)\/(u-1)=lim[u→1] u(u-1)(u²+u+1)\/(u-1)=lim[u→1] u(u²+u+1)=3 3、分左右极限讨论 lim[x→0+] [2^(1\/x)-1]\/[2^(1\/x)+1]=lim[x→0+] [1-2^(-1\/x)]\/[1+2^(-1\/x)] 此时1\/...

高数问题,关于求极限的
1.用罗比达法则,分子分母分别求导得到 cos x\/(-1)=1 2.计算X趋于0时 (e的-x2次方-1)除以(x2)的极限,用罗比达法则分子分母分别求导得到 分子-2 x e的-x2 分母2x 所以极限为 -1。所以e的-x2次方-1与x2是同阶无穷小量 3,定义 t=1-x,所以,当x趋于1时,X的1\\1-X次方的...

高数求极限有什么简便办法?
求极限是高等数学中的基本问题,也是许多复杂问题的出发点。求极限的方法有很多,但是有一些简便的办法可以帮助我们更快更准确地求解。首先,我们需要了解极限的基本概念。极限是指函数在某一点或无穷远处的趋向值。求极限就是要求这个趋向值。在求极限时,我们通常会遇到以下几种情况:1.零比零型:这种...

相似回答