∫1/(sinx+cosx)dx,这题咋做啊??

第一个....怎么对照公式啊?(没有∫csc x dx的公式,只有∫cscxcotxdx或∫(cscx)^2 dx的。)
第二个....怎么那么麻烦啊?
有简单一点的方法么?我听我同学说是用万能公式...不过到底怎么用啊?

∫1/(sinx+cosx)dx

=∫dx/√2sin(x+π/4)

=-(√2/2)∫dcos(x+π/4)/sin^2(x+π/4)

=-(√2/4){∫dcos(x+π/4)/[1-cos(x+π/4)]+∫dcos(x+π/4)/[1+cos(x+π/4)]}

=-(√2/4)ln{[1+cos(x+π/4)]/[1-cos(x+π/4)]}+c

=(√2/4)ln{[1-cos(x+π/4)]/[1+cos(x+π/4)]}+c

扩展资料

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

求函数f(x)的不定积分,要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-09-03
  这个是三角函数的不定积分,分母应先进性化简,计算步骤为:
  ∫1/(sinx+cosx)dx
  =∫dx/√2sin(x+π/4)
  =-(√2/2)∫dcos(x+π/4)/sin^2(x+π/4)
  =-(√2/4){∫dcos(x+π/4)/[1-cos(x+π/4)]+∫dcos(x+π/4)/[1+cos(x+π/4)]}
  =-(√2/4)ln{[1+cos(x+π/4)]/[1-cos(x+π/4)]}+c
  =(√2/4)ln{[1-cos(x+π/4)]/[1+cos(x+π/4)]}+c
归纳一下,这类分母是形如asinx+bcosx的情形,可以利用三角函数的公式,化简成形如Asin(x+t)或者Bcos(x+t)的形式,再进行求解。
第2个回答  2009-06-02
把分母化成(根号2)* sin(x+pi/4),然后化成csc(x+pi/4),再对照公式即可求出。
学不定积分不是有一些公式的吗?照那个∫csc x dx 的公式套就行啦,x换成(x+pi/4),前面再乘以二分之根号二就行啦,我这种方法是最简单的了。
第3个回答  2009-06-02
∫1/(sinx+cosx)dx
=∫1/[√2sin(x+π/4)]dx
=√2/2∫1/sin(x+π/4)d(x+π/4)
令t=x+π/4则
上式=√2/2∫1/sint dt
=√2/2∫1/(2sint/2 cost/2) dt
=√2/2∫1/(tant/2 cos²t/2) dt/2
=√2/2∫1/(tant/2) d(tant/2)
=√2/2ln|tant/2|+C
故:
原式=√2/2ln|tan(x/2+π/8)|+C

参考资料:时间有限,百度告诉你

∫1\/(sinx+cosx)dx,这题咋做啊??
∫1\/(sinx+cosx)dx=∫dx\/√2sin(x+π\/4)接着,我们利用三角恒等变换将√2sin(x+π\/4)视为一个复合三角函数,将其化简为:=-(√2\/2)*∫dcos(x+π\/4)\/sin^2(x+π\/4)然后,利用三角函数的倒数关系,这个积分可以被分解为两部分:=-(√2\/4)*[∫dcos(x+π\/4)\/(1-cos(x+π\/4)...

∫1\/(sinx+cosx)dx,这题咋做啊??
∫1\/(sinx+cosx)dx =∫dx\/√2sin(x+π\/4)=-(√2\/2)∫dcos(x+π\/4)\/sin^2(x+π\/4)=-(√2\/4){∫dcos(x+π\/4)\/[1-cos(x+π\/4)]+∫dcos(x+π\/4)\/[1+cos(x+π\/4)]} =-(√2\/4)ln{[1+cos(x+π\/4)]\/[1-cos(x+π\/4)]}+c =(√2\/4)ln{[1-cos(x+...

∫\/(1+sinx+cosx)dx
采用换元法与分部积分法,及基本的积分公式表 下面是总结积分题的方法:

sinx+ cosx分之一积分怎么算?
sinx+cosx分之一积分:∫1\/(sinx+cosx)dx=∫1\/[√2sin(x+π\/4)]dx=(1\/√2)∫csc(x+π\/4)d(x+π\/4)=(1\/√2)ln|csc(x+π\/4)-cot(x+π\/4)|+Csinx+cosx的取值范围:sinx+cosx取值范围为闭区间[负根号2,根号2]。三角函数定义域正弦函数y=sinx·x∈R余弦函数y=cosx·x∈R...

∫1\/(sinx+ cosx) dx等于什么?
∫1\/(sinx+cosx)dx=∫1\/sin(x+π\/4)dx=∫csc(x+π\/4)dx=ln(csc(x+π\/4)-cot(x+π\/4))+C。积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。基本介绍 积分发展的动力源自实际应用中的需求。

1\/(sinx+cosx)的不定积分怎么求??
具体回答如下:∫1\/(sinx+cosx) dx =∫1\/[√2(sinxcosπ\/4+sinπ\/4·cosx)]dx =∫1\/[√2sin(x+π\/4)] dx =√2\/2 ∫csc(x+π\/4) d(x+π\/4)=√2\/2 ln|csc(x+π\/4)-cot(x+π\/4)|+C 不定积分的意义:一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分...

如何求 1\/(sinx+cosx) 的不定积分?
具体回答如下:∫1\/(sinx+cosx) dx =∫1\/[√2(sinxcosπ\/4+sinπ\/4·cosx)]dx =∫1\/[√2sin(x+π\/4)] dx =√2\/2 ∫csc(x+π\/4) d(x+π\/4)=√2\/2 ln|csc(x+π\/4)-cot(x+π\/4)|+C 不定积分的意义:设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f...

为什么∫1\/( sinx+ cosx) dx=∫dx\/√2
这个是三角函数的不定积分,分母应先进性化简,计算步骤为:∫1\/(sinx+cosx)dx =∫dx\/√2sin(x+π\/4)=-(√2\/2)∫dcos(x+π\/4)\/sin^2(x+π\/4)=-(√2\/4){∫dcos(x+π\/4)\/[1-cos(x+π\/4)]+∫dcos(x+π\/4)\/[1+cos(x+π\/4)]} =-(√2\/4)ln{[1+cos(x+π\/4)...

1\/sinx+cosx的积分,手写详细写出步骤
∫1\/(sinx+cosx) dx =∫1\/[√2·(sinxcosπ\/4+sinπ\/4·cosx)]dx =∫1\/[√2·sin(x+π\/4)] dx =√2\/2 ∫csc(x+π\/4) d(x+π\/4)=√2\/2 ln|csc(x+π\/4)-cot(x+π\/4)|+C 一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。

1\/(sinx+cosx)的定积分怎么求
∫1/(sinx+cosx)dx =∫1/{2tan(x\/2)\/[1+tan^2(x\/2)]+[1-tan^2(x\/2)]\/[1+tan^2(x\/2)]}dx =∫[1+tan^2(x\/2)]/[2tan(x\/2)+1-tan^2(x\/2)]dx =-∫1/{[tan(x\/2)-1]^2-2}dtan(x\/2)=-1\/(2√2)∫{1/[tan(x\/2)-1-√2]-1/[tan(x\/2)-1...

相似回答