将n只不同的球随机地放入n个不同的盒子,求恰有一个空盒的概率.

如题所述

【答案】:分母是重复排列.
根据乘法原理,将n只不同的球随机地放入n个不同的盒子,有nn种方法.
恰有一个空盒相当于:有一个盒子中有两个球,其余n-2球放入n-1个盒子,每个盒子中至多有一个球.根据乘法原理,有种方法.于是,所求概率为
从n种不同元素中可以重复地任取r个是重复排列问题.用乘法原理可以证明:不同方案数为nr.实际上,在求样本空间时,已经遇到这个问题了.只不过那里要求写出所有样本点.这里仅要求给出计数.
温馨提示:内容为网友见解,仅供参考
无其他回答

将n只不同的球随机地放入n个不同的盒子,求恰有一个空盒的概率.
【答案】:分母是重复排列.根据乘法原理,将n只不同的球随机地放入n个不同的盒子,有nn种方法.恰有一个空盒相当于:有一个盒子中有两个球,其余n-2球放入n-1个盒子,每个盒子中至多有一个球.根据乘法原理,有种方法.于是,所求概率为从n种不同元素中可以重复地任取r个是重复排列问题.用...

将n个不同的小球放入n个不同的盒子里,恰好有一个空盒的放法种数是...
将n个不同的小球放入n个不同的盒子里,恰好有一个空盒时,必有一个盒子为两个球,剩下的小球放到其余盒子中去,由此可得结论. 【解析】 由题意,将n个不同的小球放入n个不同的盒子里,恰好有一个空盒,则 第一步,取出一个空盒,有有 种方法,第二步把n个球分为n-1组,有 种...

高中数学:将n个不同小球放入n个不同盒子中,。。。
不出现空盒的情况也就是说每个盒子一个小球,也就是把这个n个小球排列,所以有n!个选择 故概率为n!\/(n^n)

n个不同的球放入n个不同的盒子,若恰好有一个盒子是空的,则共有几种方 ...
解:说明恰好有1个盒子中有两个小球,其他盒子至多有1个,将其中两个球看成一个整体,变成n-1个元素,放入n个不同的盒子(排列问题)C(n,2)*A(n,n-1)=n*(n-1)\/2 *n!=n(n-1)*n!\/2 另法;先挑出一个盒子,放入两个小球,然后把n-2个小球放入其他的n-1个盒子,是排列问题,有...

将n只球随机地放入n个盒子中,则每个盒子中恰好有1只球的概率为() 麻 ...
所求概率为n*(n-1)*(n-2)*...*3*2*1\/(n^n)理由:把“将n只球随机地放入n个盒子中”分成n次操作,每次操作把1个球放入n个盒子中,每次有n种放法,故总数是n^n, 第一次符合要求的放法有n种,第二次有(n-1)种,...,第n次只有1种。所以所求概率为n*(n-1)*(n-2)*...*...

将n个球随机放入N(N>=n)个盒子中去,计算每个盒子至多有一个球的概率...
1、C(N,n)在N个盒子里面选出n个盒子的所有组合方法 2、n个球放n个盒子,恰好每个盒子一个球的概率:(n的阶乘)\/(n的n次方)3、所以答案=C(N,n)*(n的阶乘)\/(n的n次方)=P(N,n)\/(n的n次方)

将n个不同的球随机地放到N个盒子中,每个球都以1\/N的概率进入每一个盒子...
至少有2只球在同一个盒子中的概率 = 各种概率 - 每只盒子里最多只有一只球 n =1 - C m (即排列组合运算 m 中 取 n )

把n个不同球放进n个不同的盒子(每个盒子放一个)的概率是多少
n*(n-1)*(n-2)*(n-3)*~~~*n

排列组合问题,将n个不同的球,投入N个不同的盒中
恰有n个盒子有球,那么方法数=A(N,n)总方法数=N^n c(n,N) · n!这个就等于A(N,n)意思是先选出n个盒子来,然后把n个球放入到里面

将N个球随机放入n个盒中,求每个盒中至少放入一个球的概率
总体中的基本事件是把第1个球放入n个 盒子有n种,其他球也一样共 有N个n相乘有n^N种 包含事件A的基本事件是:将N个球全排有N!种,再将(n-1)块板将此隔开有C(N,n-1)种 共有N!*C(N,n-1)P(A)=N!*C(N,n-1)\/n^N 如果答案对不上你的课后答案的话,可能是你没有说清楚球是...

相似回答
大家正在搜