求一小球放入盒子的排列组合数学问题

有编号为1-361号的格子,格子是由顺序的,由1-2-3-.....-361号排列.
现有小球红色,蓝色,灰色三种,要求按照规定放小球到这361个格子中.
每个格子只能放1个球.
规定:
红色小球可以放179(最少)-361(最多)
蓝色小球可放0(最少)-178(最多)
灰色小球可放0(最少)-181个(最多)
求一共有多少种组合排列???????????????????
格子是有顺序的,请注意! 红球永远比蓝球多

三种小球,只考虑放两种即可,余下的必定是第三种。
考虑到红球最少,灰球最多时,仍会余下一格必需放蓝球,需要排除多算的组合。
红球361个全放时,刚好放满格子,只有1种排列组合。

设红球放了m个,蓝球放了n个,则排列组合有
{∑[C(361,m)C(361-m,n)]}+1-C(361,179)C(361-179,0),其中m,n都是整数,179≤m<361,对每一个固定的m值,有0≤n≤361-m且n≤178。

式子看着简单,但需要用到电脑编程来计算才能得出数值。
(∑表示求和。式子里含有两个递变量m与n,每取一个可能的m值代入,都需要遍历所有可能的n值先求和,然后再取下一个m代入。C(正整数,0)=1。)
温馨提示:内容为网友见解,仅供参考
第1个回答  2009-07-16
先从361个位置中选179个全放红的,有C179
361种
还剩余182个位置
剩余的有5种情况,全红,红蓝组合,红灰组合,蓝灰组合,三色组合
对5种分分别讨论:(一)全红,有1种
(二)红蓝组合:因为蓝的最多178,所以最少需要4个红的。先在182个位置中选4个放4红的,有C4
182种
还剩余178个位置,每个有红或蓝2种选择,所以一共有2^178种
(三)红灰组合:因为灰的最多181,所以最少需要1个红的。先在182个位置中选1个放1红的,有C1
182种
还剩余181个位置,每个有红或灰2种选择,所以一共有2^181种
(四) 蓝灰组合:最少有4个灰的和一个蓝的,如果不是这样,灰的有3,2,1的话,蓝的就不够的,同样,最少要有个蓝的,否则灰的不够
先在182个位置中安排这5个,C5 * C1
182种 5
还剩余177个位置,每个有蓝灰2种选择,所以一共有2^177种
五(三色组合),先在182个位置中选3个,各放有一个 有A3
182种
这时还有179个位置,红的最多有179,蓝的最多177个,灰的最多180,红的灰的都够单独放满,而蓝的少
所以红和灰的最少要一共放两个,从179个位置选2个,有C2
179,这2个有,全红,红灰,灰红,全灰4种情况,
剩余的177个位置 每个有3^177种
最后有分类原则:一共有
C179/361 *
(一+二+三+四+五)
其中 一:1
二:C3*2^178
182
三: C1*2^181
182
四: C5 * C1*2^177
182 5
五:A3* C2*4*3^177
182 179

差不多就这样了吧
第2个回答  2009-07-16
这是排列问题:

∑[P(361,k)P(361-k,m)P(361-k-m,n)]
其中:
k=179,180,181,...361 (这是红球)
m=0,1,2,...178 (这是蓝球)
n=0,1,2,...181 (这是灰球)
且:
m<=361-k
n<=361-k-m

符号解释:
P(361,k)=361!/(361-k)!表示将红球放入361个格子的任意k个格子中的排列数。
P(361-k,m)表示将红球放入361个格子的任意k个格子中后,再将蓝球放入剩余空格的任意m个格子中的排列数。
P(361-k-m,n)表示将红球放入361个格子的任意k个格子中后,再将蓝球放入剩余空格的任意m个格子中,最后再将灰球放入剩余空格的任意n个格子中的排列数。
∑[P(361,k)P(361-k,m)P(361-k-m,n)]表示以上各种可能的k、m、n取值时的乘积进行求和。

这个可以借助编程来解决计算问题,这正是人的弱项,电脑的强项。
第3个回答  2009-07-17
当放x个红球,y个灰球时,共有放法为C(361,x)*C(361-x,y)=(361!*(361-x)!/X!)/Y!;
当x确定时,y取值范围为0-(361-x),引入f(Z)=F(Z-1)+1/Z!,F(1)=1,
则按y从1到(361-x)进行累加可得:361!*(361-x)!*F(361-X)/X!;
再按X从179到361进行累加可得:P=∑361!*(361-x)!*F(361-X)/X!;
但因361-x最大为182与y最大才181,故须扣除此时的放法182*C(361,179),
最终结果就是:P-182*C(361,179).

注:上面漏掉了y=0,此时当X固定时,就只有一种情况,故还须增加X从183到360的以下累加:Q=∑C(361,x),
第4个回答  2009-07-16
格子虽然有顺序,但不属于排列问题,还是组合问题,因为调换球没有影响。

首先放必须放的179个红球,一共有C(179,361)种。剩下182个格子。

如果不考虑球的数量,一共有3^182种。但是要去掉几种情况:
1. 182个全是灰色的情况,有1种。
2. 179,180,181,182个蓝色的情况,有C(179,182)*2^3+C(180,182)*2^2+C(181,182)*2+1种。计算出为:7972329种。

好了,答案就是C(179,361)*(3^182-1-C(179,182)*2^3-C(180,182)*2^2-C(181,182)*2-1) = 晕了。。。我不会算了。只能给式子了。

太复杂了,好像是C(179,361)*6.8559613241279753105360754948554e+86

求一小球放入盒子的排列组合数学问题
三种小球,只考虑放两种即可,余下的必定是第三种。考虑到红球最少,灰球最多时,仍会余下一格必需放蓝球,需要排除多算的组合。红球361个全放时,刚好放满格子,只有1种排列组合。设红球放了m个,蓝球放了n个,则排列组合有 {∑[C(361,m)C(361-m,n)]}+1-C(361,179)C(361-179,0),...

数学小球入盒的题目
一个排列组合的问题 因为没有要求一定要那个盒子是空盒子,那A,B,C,D的4个盒子的区别就不存在,只考虑怎么样转3个盒子,空一个盒子.第二点,是小球也没有作出特别规定,那我们也不用考虑到小球的编号1.2.3.4,只把他们看成等同的小球.现在就变成了4个一样的球和4个一样盒子之间的问题.因为没有...

...高中数学排列组合问题求解释?小球放进盒子里,共两个题目
第一题中你重复了,假设你选出的是A球,最后它和B球同在1号箱子里;若你选出的是B球,它和A球还有可能同时出现在1号箱子里,这是一种情况,可是你算了2次,所以你最后的结果要除以2才对。第二题中还是重复的问题,在5C1*4C1*3C3中,你先在5个球中选出A球,再在4个球中选出B球;也可...

将n+1个不同的小球全部放入n个不同的盒子里
第一个小球,把它放入这n个不同的盒子,它有n个选择,第二个小球,让它再选,它也有n种选择,……第n+1个小球同样也有n种选择 根据乘法原理 把n+1个n相乘得 n^(n+1)种 再来看每个盒子都不空的情况 每个盒子不空就一定是有且只有一个盒子里面有两个球 先从n+1挑选出来这两个看做一份...

排列组合问题
红球在红盒内且黄球在黄盒内的概率为P3 则P=1-(P1+P2-P3)没有条件约束,5个球可以随意摆放,所有可能的放法有5!种 如果规定一个球必须放在某一个盒子里,那么剩下5-1=4个球可以随意摆放,放法共有4!种 如果规定两个球必须放在某两个盒子里,那么剩下5-1=3个球可以随意摆放,放法共有3...

有关排列组合的一道数学题
1)×C(8,1)×C(6,1)先将成对的那双选出来是C(5,1)种取法,已经取出了2只,还剩8只,再从这8只里取出一只,取法为C(8,1)种,现在取出了3只,还得取一只,但不能在刚取的那双里取,所以只能在其它剩下的6只里取,有C(6,1)种取法。故方案为:C(5,1)×C(8,1)×C(6,1)...

排列组合详解,希望有思路
有种放法;④余下的4个球分三组,一组2个、另两组各一个,有种放法.综上可以知道,共有15种放法.下列解法更妙:首先在2号盒子里放1个球,3号盒子里放2个球,余下的7个球可以用“隔板法”分为3组,每组至少1个球,然后把三组依次放入3个盒子里即可.因此一共有15种放法....

计数原理、排列组合问题
b1:A b2:B b3:empty b4:DC 显然,上面我们对球做了不同排列,但其实两种放法是一样的。所以,应当先进行组合(即盒无区分,无区分分堆),再对盒子进行全排列(此题盒子和球数相等看不出来)O|O||OO,可以看作 单隔板和双隔板两个隔板隔出3堆,每堆非空,或者映射成 不定方程 x1+...

排列组合放小球问题 详解有追加
为此我们先来看另一个问题——x+y+z+r=6有多少组正整数解 (换个意思就是将6个相同小球放入4个不同盒子,,要求每个盒子至少有一个球,问有几种方法)实际上此时便转化成很经典的隔板法应用 6个球分成有编号的4份,则需要在6个球形成的5个空中插入3块板 即C(5,3)那么如何求x+y+z+r...

数学排列组合问题
用排除法好分析 4个球全排列:A(4,4)=24 1号球放到1,全排列:A(3,3)=6 所求排列=24-6=18

相似回答