排列组合隔板法

把10本相同的书分给编号1,2,3的阅览室,要求每个阅览室分得的书数不大于其编号数,则不同的分发有多少种? (排列组合中的隔板法)很急

因为书是相同的,所以可以让1,2,3阅览室分别放1,2,3本书,在将剩下的4本书进行分配,决定分配方案的种数,在将4本书分给一个阅览室,则有3种分法。如果将4本书分给二个阅览室,那么就有9种分法,如果将4本书分给三个阅览室,则有3种分法。
所以:3+9+9=15
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-12-31
每个阅览室分得的书数不大于其编号数,所以
1号室可分0或1本,2种分法
2..............0,1或2本,3种分法
3..............0,1,2或3本,4种分法
共有2*3*4=24咱分法
第2个回答  推荐于2017-11-24
先抽出3本书,分别发给123阅览室0,1,2本书,其余7本书用隔板法就是中间有6个空,插2块板子
C(6,2)=15本回答被提问者采纳
第3个回答  2011-12-31
应该不xiao于其编号数吧?答案是C(6,2)=15

什么叫隔板法
1、隔板法就是在n个元素间插入(b-1)个板,即把n个元素分成b组的方法。在排列组合中,对于将不可分辨的球装入到可以分辨的盒子中而求装入方法数的问题,常用隔板法。2、隔板法就是把m个相同单元分配成n组。这样m个单元中间有m-1个空格,分成n组需要n-1块隔板,所以就是c(m-1,n-1)种...

数量关系:排列组合系列“隔板教你隔出小技巧”?
公务员考试行测数量关系题,排列组合解法之隔板法:运用步骤 题目满足有n相同分给不同的m,且必须分完。将n个元素排成一排,利用板子进行分配,其中需要分给m个对象,则相当于将n个元素分成m份,需要板子m-1块分配,并且将板子插入在n元素行程的空位任何选n-1空位来放m-1板子。即C(n-1,m-1)。...

排列组合解题技巧:隔板法的灵活运用。
隔板法是解决排列组合问题的一种便捷方法,特别适用于将相同元素分配至不同组别的情况。其核心思想在于,将元素与隔板结合形成间隔,通过隔断选择实现元素的分配。具体步骤如下:①对于标准条件,即每组分配数至少为1的情况,我们首先明确,在m个元素中,形成m-1个间隔。通过在这些间隔中选择n-1个位置放置...

如何理解数学排序中隔板插空法,并举例说明
在组合数学中,隔板法(又叫插空法)是排列组合的推广,主要用于解决不相邻组合与追加排列的问题。隔板法就是在n个元素间插入(b-1)个板,即把n个元素分成b组的方法。 例:有广西橘子,烟台苹果,莱阳梨若干,从中随意取出四个,问共有多少种不同取法? 问题等价于有四个水果篮,将其分为三组向...

2023年省考:利用隔板巧解同素分堆问题
答案为B. 通过隔板法,我们可以将10个苹果排成一列,然后在它们之间插入2块板子,这样就将苹果分成了3堆。因为每个小朋友至少需要一个苹果,所以板子不能放在两端,只能在9个空隙中选择2个位置放置。这相当于从9个位置中选2个位置,所以答案是组合数C(9,2) = 36。因此,正确答案是B。“隔板法”...

排列组合问题,6个相同的球放到3个不同的盒子里,有几种方法?
3. 解题过程中,我们可以应用排列组合原理,将问题视为在8个空隙中放置2个隔板的问题。4. 由于有3个盒子,故需插入2个隔板来分隔这些球。5. 采用隔板法的直观理解是,先假设存在3个虚假的球,这样就有9个球和8个空隙。6. 在这9个球和8个空隙中,选择2个位置放置隔板,从而分隔球体。7. 根据...

高中数学排列组合中的隔板法是什么?求讲解
是组合问题,故隔板有C19 17种不同的放法,根据分步计数原理,共有C19 17种不同的方法,因17块隔板将20个小球分成18组,从左到右可以看成每班所得的名额数,每一种隔板与小球的排法对应于一种分法,故有Cm-1 m-1种分法.点评:对n件相同物品(或名额)分给m个人(或位置),每个人(或位置...

排列组合隔板法怎么用
在排列组合问题中,隔板法是一种有用的工具,用于处理将不可区分的元素分组的情况。其基本原理是通过在n个元素之间插入(b-1)个隔板来形成b组,这里的隔板不考虑顺序,只计算插入的位置组合。当面对如何将m个相同单元分配到n个组的问题时,我们可以计算出C(m-1, n-1)种方法,前提是所有单元必须...

排列组合解题技巧:隔板法的灵活运用。
掌握排列组合解题的巧妙工具——隔板法,让你轻松应对各种难题。一、标准条件与公式应用当你要将m个相同的元素均匀分配给n组,每组至少分配一个,就好比在m个元素形成的m-1个“隔板”中选择n-1个位置放置这些隔板。这个经典的数学概念可以用公式C(m-1,n-1)来表示。例如,当8个小球分给4人,每人...

请高手详细说明一下排列组合问题中的"隔板法".
人为的再加上3个小球,保证每个盒子都至少分到一个小球,那就符合隔板法的要求了(分完后,再在每组中各去掉一个小球,即满足了题设的要求)。然后就变成待分小球总数为23个,球中间有22个空档,需要在这22个空档里加入2个隔板来分隔为3份,共有C(22,2)=231种不同的方法。

相似回答