已知两个正实数x,y,满足x+y=4,求1\/x+4\/y的最小值
解答如下:1\/x + 4\/y = 4\/4x + 4\/y = (x + y)\/ 4x + (x + y)\/y = 1\/4 + y\/4x + x\/y + 1 ≥ 5\/4 + 1 = 9\/4 当且仅当y\/4x = x\/y,即x =4\/3,y = 8\/3时,取到等号
已知两个正数X、Y满足X+Y=4,求1\/X+4\/Y的范围?
4=x+y=x+(y\/2)+y\/2)>=3*4^(-1\/3) *(xy^2)^(1\/3)(xy^2)^(1\/3)<=(1\/3)4^(4\/3), 等号成立的条件:x=y\/2 (1\/x)+(4\/y)=(1\/x)+(2\/y)+(2\/y)>=3*4^(1\/3)\/(xy^2)^(1\/3)>=3*4^(1\/3)\/[(1\/3)4^(4\/3)]=9\/4, 等号成立的条件:x=y\/2 ...
已知两个正数X、Y满足X+Y=4,求1\/X+4\/Y的范围?
把4X\/Y+Y\/X用基本不等式4X\/Y+Y\/X≥2√4X\/Y+Y\/X=2√4=4,再把(5+4)=9再把9除以4,因为前面乘以了(X+Y)。解得1\/X+4\/Y的范围是(5\/4,9\/4]!!!应该是这样!!!
已知两个正数xy满足x+y=4,则1\/x+4\/y的取值范围是
∵两个正数xy满足x+y=4 ∴x\/4+y\/4=1 ∴1\/x+4\/y =(1\/x+4\/y)(x\/4+y\/4)=1\/4+y\/4x+x\/y+1 =y\/4x+x\/y+5\/4 ≥(2√1\/4)+5\/4 =9\/4 当y\/4x=x\/y,即x=4\/3,y=8\/3时 上式等式成立 ∴1\/x+4\/y∈[9\/4,+∞)
高二数学 已知两个正变量x,y满足x+y=4,则1\/x+4\/y取值范围是
令原式子=k=1\/(4-y)+4\/y,进一步化简得到:ky^2-(3+4k)y+16=0 要使上式子成立,则必须使判别式(3+4k)^2-64k>=0 (4k-1)(4k-9)>=0 ,又考虑到题目最初的条件0
已知X+Y=4求1\/X+4\/Y的最值
X+Y=4 1\/X+4\/Y=(1\/4)*4(1\/x+4\/y)=(1\/4)(x+y)(1\/x+4\/y)=(1\/4)(1+4+y\/x+4x\/y)≥(1\/4)*[5+2√(y\/x*4x\/y)]=(1\/4)*[5+4]=9\/4 故1\/X+4\/Y的最值为9\/4
已知两个正数x,y满足x+y=4,则使不等式1\/x+4\/y≥m恒成立的实数m的取值...
∵x+y=4∴(x+y)/4=1 ∵1\/x+4\/y =(x+y)/4x+(x+y)/y =1\/4+y/4x+x/y+1=5\/4+2√(y/4x*x/y)≥9\/4 ∵(1\/x+4\/y)最小值≥m ∴m≤9\/4
已知两个正数x,y满足x+y=4,且使得不等式1\/x+4\/y≥m,恒成立的实数m的取...
1\/x+4\/y=4\/4x+4\/y=(x+y)\/4x+(x+y)\/y=5\/4+(y\/4x+x\/y)≥5\/4+2=13\/2 当且仅当2x=y,即x=4\/3,y=8\/3时,等号成立。要使不等式1\/x+4\/y≥m恒成立 只要m≤13\/2
若正数x,y满足xy=y+4,则x+y的最小值为
解:xy = y+4 y = 4\/(x-1)由x>0 , y>0(题目条件),得x>1 x+y = x + 4\/(x-1)设x+y = f(x) = x + 4\/(x-1) (x>1)则对f(x)求导,得f‘(x) = 1 - 4\/(x-1)²当x=3时,f’(x) = 0,f(x)取极值,且判断出(1,3)为单调减区间,(3,+∞)...
已知两个正实数x,y满足x+y=4,则使1\/x+4\/y大于等于m恒成立的实数m的取值...
x+y=4得y=4-x 1\/x+4\/y=1\/x+4\/(4-x)设f(x)=1\/x+4\/(4-x)求导 f'(x)=(1\/x)'+[4\/(4-x)]'=-1\/x²+(-1)•[-4\/(4-x)²]=4\/(4-x)²-1\/x²=[4x²-(4-x)²]\/x²(4-x)²=[2x+(4-x)][2x-(4-x)]...