③把4个不同的小球放入3个相同的盒子,共有多少种不同的放法

如题所述

第1个回答  2016-06-09
60种不同方法

四个不同的小球全部随意放入3个不同的盒子里,使每个盒子都不空的放法...
(C4 2+C4 1)*P3 3=60种放法 即4个小球不同,分成3组的不同分法为4个小球选2个,其它各1;或4个小球选1个,其它一个为空,一个为3个。(6+4=10为组合问题)盒子不同的排列方式为3*2=6(排列问题)二者乘积为总放法数。若每个盒子不能为空,则为6*6=36种 ...

4个不同的小球放入3个有编号的盒子,每个盒子至少放一个小球,有___种...
根据题意,分2步进行分析: ①、把4个小球分成3组,其中一组2只,剩余2组各1只,分组方法有C 4 2 =6种. ②、再把这3组小球全排列,对应3个盒子,有A 3 3 =6种. 再根据分步计数原理可得所有的不同方法共有6×6=36种, 故答案为:36.

将4个不同的小球投入3个相同的盒内,不同的投入方式?
1,2,1的情况对应第一个盒子1个,第二个盒子2个,第三个盒子1个 是不同的情况。对4个相同的球放入3个相同的盒子,用枚举法就可以:1。每个盒子都有球:只有1,1,2一种情况 2。有一个盒子没有球:有1,3,0;2,2,0两种情况 3。只有一个盒子有球:4,0,0只有一种情况。共4种情况...

四个不同的小球全部放入三个不同的盒子中,使每个盒子都不空的方法...
解答:相当于有两个球在一起。先将4个球的两个球看成一个整体,有C(4,2)种方法,这样就有3堆球,放入三个盒子,共有A(3,3)种方法 共有C(4,2)*A(3,3)=6*6=36种方法。

4个不同的小球放入3个不同的盒子中(盒子不允许为空),一共有___种不同...
由题意知四个不同的小球全部随意放入三个不同的盒子中,则必须有1个盒子里放2个球,其余的三个盒子各放1个, 首先要从4个球中选2个作为一个元素,有C 4 2 种结果, 同其他的两个元素在三个位置全排列有A 3 3 种情况, 根据分步乘法原理知共有C 4 2 A 3 3 =36; 故...

排列组合 将4个不同的小球放入3个不同的盒子,其中每个盒子都不放空的...
解答:按照要求,最后有1个盒子有两个球,另外两个盒子1个球。∴ 先将4个球中的两个合成一个整体,有C(4,2)=6种,然后将3组球放入3个不同的盒子,是排列问题,有A(3,3)=6种,∴ 共有 6*6=36种放法。

4个不同的小球放进3个不同的盒子里,恰好有一个空盒子,多少种方法?
第一步:在四个盒子中任选一个做为空盒子,由C(4,1)=4种不同的选择;第二步:将3个盒子排成一排,4个小球任意选3个分别放进3个盒子中,有A(4,3)=4*3*2=24种不同的方法;第三步:在3个盒子中任选1个放进最后1个小球,共3种方法。因此本问题共有4*24*3=288种不同的方法。

把四个不同的小球放入3个分别标有1—3号的盒子中。 。。。
1>不允许有空盒,也就意味着必有两球在同一个盒子里,从4个小球里抽出两个在同一个盒子里,有C42种抽法,因为盒子不同,所以3个盒子排列组合共有A33种排法,所以第一问结果为:C42*A33=36 2>允许有空盒,不代表一定有空盒,也可以全装满,所以每个球有3种选法,共有:3*3*3*3=81种 3>当4和1...

将4个不同颜色的小球全部放入不同标号的3个盒子中,可以有一个或者多个...
根据题意,每个小球有3种方法,共有3×3×3×3=34=81种放法,故选D.

将四个不同颜色的小球放入三个盒子中
解1:C(1,4)×3÷2=6种 解2:分类讨论1,没有空盒,有6种 分类讨论2:有一个空盒 有两种情况 ①1和3分,有C(1,4)=4种 ②2和2分,有C(2,4)÷2=3种 分类讨论3,有两个空盒 共1种 所以总共6+4+3+1=14种

相似回答