四个不同的小球全部放入三个不同的盒子中,使每个盒子都不空的方法...
共有C(4,2)*A(3,3)=6*6=36种方法。
排列组合 将4个不同的小球放入3个不同的盒子,其中每个盒子都不放空的...
解答:按照要求,最后有1个盒子有两个球,另外两个盒子1个球。∴ 先将4个球中的两个合成一个整体,有C(4,2)=6种,然后将3组球放入3个不同的盒子,是排列问题,有A(3,3)=6种,∴ 共有 6*6=36种放法。
四个不同的小球全部随意放入3个不同的盒子里,使每个盒子都不空的放法...
(C4 2+C4 1)*P3 3=60种放法 即4个小球不同,分成3组的不同分法为4个小球选2个,其它各1;或4个小球选1个,其它一个为空,一个为3个。(6+4=10为组合问题)盒子不同的排列方式为3*2=6(排列问题)二者乘积为总放法数。若每个盒子不能为空,则为6*6=36种 ...
四种颜色不同的小球全部随机放入三个不同的盒子中,使每个盒子都不空大神...
因为有个盒子有两个球,所以要把四个球分三份C4.2(捆绑法),再把三份球放入三个盒中A3.3所以就是A3.3*C4.2等于36种。欢迎采纳
四个不同的小球全部随意放入三个不同的盒子中,使每个盒子都不空的放法...
由题意知四个不同的小球全部随意放入三个不同的盒子中,则必须有1个盒子里放2个球,其余的三个盒子各放1个,首先要从4个球中选2个作为一个元素,有C42种结果,同其他的两个元素在三个位置全排列有A33种情况,根据分步乘法原理知共有C42A33=36;故选B.
四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的...
法一:从四个中选三个应该是C43而不是A43 再从三个盒子中选一个放剩下的一个球C31 C43C31=36 法二:或者可以这么求,从四个球里面选两个放入其中的一个盒子:C42*C31=18 另外两个球放入剩下的两个盒子中:A22=2 求得36种
四个小球放在三个盒子里要求每个盒子不空 有几种做法
三种112 211 121
...颜色不同的小球全部随意放入三个不同的盒子中,使每个盒子都不空的...
4个求,3个盒子,且都为空 则有一个盒子是有2个球的。就是四选二:C(4)2=6,再这种情况对三个盒子都可能所以再乘3 再剩下2个盒子分别一个 就是2种情况了 所以一共6*3*2=36
将4个不同的小球放入3个不同的盒中,每个盒子至少放入一球,则不同方法...
第一步从4个球种选出2个组成复合元素共有C24种方法,再把3个元素(包含一个复合元素)放入3个不同的盒子中有A33种,根据分步计数原理放球的方法共有C24?A33=36种.故选B.
将4个小球放进3个盒子里,盒子不放空,有多少种放法
3种。盒子不空,那每个盒子里至少要有1个,这样就用去3个球,只剩一个球,放在任意一个盒内,只有3种放法。这个前提是所有的球都一样,没有编号。要是考虑每个球是不一样的,那就太复杂了