将4个不同的球放入3个不同的盒子中,每个盒内至少有1个球,则不同的放法种数 A.24 B.36 C.48 D.96

如题所述

每个都要有,将4个球分成3份,相当与4个里面选两个,是C(4.2)=6 这3分全排列为A(3,3)=6
答案是36
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-06-15
24追问

求过程~~~~~

...同的盒中,每个盒内至少有1个球,则不同的放法种数为__
在4个小球之间插入2个挡板,即可把4个小球分成3组,方法有 C 24 =6种.然后再把这3组小球全排列,方法有 A 33 =6种.再根据分步计数原理可得所有的不同方法共有6×6=36种,故答案为 36.

将4个不同的小球放入3个不同的盒中,每个盒子至少放入一球,则不同方法...
第一步从4个球种选出2个组成复合元素共有C24种方法,再把3个元素(包含一个复合元素)放入3个不同的盒子中有A33种,根据分步计数原理放球的方法共有C24?A33=36种.故选B.

4个不同的小球放进3个不同的盒子里,恰好有一个空盒子,多少种方法?
第一步:在四个盒子中任选一个做为空盒子,由C(4,1)=4种不同的选择;第二步:将3个盒子排成一排,4个小球任意选3个分别放进3个盒子中,有A(4,3)=4*3*2=24种不同的方法;第三步:在3个盒子中任选1个放进最后1个小球,共3种方法。因此本问题共有4*24*3=288种不同的方法。

4个不同的小球放入3个不同的盒子中(盒子不允许为空),一共有___种不同...
由题意知四个不同的小球全部随意放入三个不同的盒子中,则必须有1个盒子里放2个球,其余的三个盒子各放1个, 首先要从4个球中选2个作为一个元素,有C 4 2 种结果, 同其他的两个元素在三个位置全排列有A 3 3 种情况, 根据分步乘法原理知共有C 4 2 A 3 3 =36; 故...

...球放到3个不同的盒子中,要求每个盒子至少放1个球,共有多少方法?_百 ...
意思就是先从4个里面拿出来1个 让另外的3个去排列 然后拿出来的这个3个位置随便取1个 总共就是 C(4,1)*A(3,3)*C(3,1)=72 第二种要这么算的话 C(4,1)*C(3,2)*P(3,3) =72种意思就是先取1个出来 然后剩下的3个取2个 最后全排列 。第三种明显漏掉了 先取2个只算到了前2...

...将4个不同的小球放入3个不同的盒子,其中每个盒子都不放空的放法有...
解答:按照要求,最后有1个盒子有两个球,另外两个盒子1个球。∴ 先将4个球中的两个合成一个整体,有C(4,2)=6种,然后将3组球放入3个不同的盒子,是排列问题,有A(3,3)=6种,∴ 共有 6*6=36种放法。

...的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能...
将4个小球放入3个不同的盒子,先在4个小球中任取2个作为1组,再将其与其他2个小球对应3个盒子,共有C42A33=36种情况,若红球和蓝球放到同一个盒子,则黑、黄球放进其余的盒子里,有A33=6种情况,则红球和蓝球不放到同一个盒子的放法种数为36-6=30种;故选C.

四种不同颜色的球全部随意放入三个不同的盒子, 使每个盒子都不空的...
解答:先分组后排列,四个球放入3个盒子,每个盒子不空,则最后的结果是1个盒子2个球,其他盒子1个球 (1)先将4个球中的两个看成一个整体,得到3组球,共有C(4,2)=6种方法 (2)将3组球放入3个盒子中,是排列问题,有A(3,3)=6种方法,∴ 共有6*6=36种不同的放法。

将4个不同颜色的小球全部放入不同标号的3个盒子中,可以有一个或者多个...
根据题意,每个小球有3种方法,共有3×3×3×3=34=81种放法,故选D.

...颜色不同的小球全部随意放入三个不同的盒子中,使每个盒子都不空的...
4个求,3个盒子,且都为空 则有一个盒子是有2个球的。就是四选二:C(4)2=6,再这种情况对三个盒子都可能所以再乘3 再剩下2个盒子分别一个 就是2种情况了 所以一共6*3*2=36

相似回答