【排列与组合】四个不同的小球被放入编号为1,2,3,4的四个盒子中,则恰有一个空盒子的放法共有___种
〖参考答案〗144
我只有答案。
请尽量写出解析过程。
谢谢!
【排列与组合】四个不同的小球被放入编号为1,2,3,4的四个盒子中
所以是C41*C41*C31*C31=144
【排列与组合】四个不同的小球被放入编号为1,2,3,4的四个盒子中
分步 先选一个空盒出来 C4\/1=4 四个球中选两个捆绑 C4\/2=6 再排列 A3\/3=6 再相乘 4x6x6=144
四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的方法...
由题意,四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列故共有C42A43=144种不同的放法.故选D
四个不同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有...
144 先将4个小球分成4份,其中一份有2个小球,一份有0个小球,另两个各是一份,有 种不同的分组方法,再将这4份放到4个不同的盒子中,有 种不同的放法.共有6×24=144种不同的放法.名师点金:在排列组合综合问题中,一般是先选后排,先分组后排序,注意分组时,若是平均分组,则应注意组数之...
排列与组合:4个不同小球放入编号分别为1,2,3,4的四个盒子,恰有一个
四个盒子有1个空的,说明剩下3个盒子有1个装2个球,有2个各装1个球。A(4,4)×C(4,2)×C(2,1)×C(1,1)=(4×3×2×1)×(4×3÷2)×2×1=288,一共288种排列。先排列4个盒子,然后第一个盒子取2个球,第2个盒子取1个球,第3个盒子取1个球,第4个盒子不装。
...把四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒...
将小球分为任意3组的分法有C(4,2)=6种,所以恰好有一个空盒的放法,就是将分好组的小球放进3个盒子中,一共有 C(4,2)P(4,3)=144种
把四种不同的小球放入编号为1.2.3.4的四个盒子中,则恰有一个空盒的方...
显然,其中一个盒子一定有两个球 先在4个球中取两个球,有c(4 2)=6种可能 把这两个球看成整体,那么问题可以转化成3个球放入4个盒的排列,即A(4 3)=24 所以共有6*24=144种可能
四个不同的小球全部放入编号为1、2、3、4的四个盒中。(1)恰有两个空...
首先把四个不同的球分成两堆,设球为a b c d,有两种情况,一种就是分为了1个1球和3个球,另一种是各有两个球,第一个情况有四种,a和bcd,b和acd,c和abd,d和abc第二个情况有3种,ab和cd,ac和bd,ad和bc。一共7种情况来分球。然后选出两个盒子用来放球,有6种情况,12,13,14,...
四个不同的小球,全部放入编号为1,2,3,4的四个盒子中?
1)2)3)为加法原理,ab为乘法原理 所以此题答案为16*6=96种,3,1.每个球有四个盒子可以选所以是4*4=16 2.就是将四个球放进两个盒子是C43+C42+C41=8 3.就是先考虑甲乙两球的放置后再考虑剩余球的放置,就不给答案了,0,四个不同的小球,全部放入编号为1,2,3,4的四个盒子中 (1)随便...
4个不同的小球放入编号为1,2,3,4的4个盒子里 恰有一个空盒的方法有多 ...
有一个空盒,先选1个空盒,有C(4,1)种方法 剩下的3个盒子,第一个盒子有4种方法,二个有3种,三个有2种,最后一个有3种 所以一共有‘C(4,1)×4×3×2×3=252种