4个不同的小球放入3个不同的盒子中(盒子不允许为空),一共有___种...
由题意知四个不同的小球全部随意放入三个不同的盒子中,则必须有1个盒子里放2个球,其余的三个盒子各放1个, 首先要从4个球中选2个作为一个元素,有C 4 2 种结果, 同其他的两个元素在三个位置全排列有A 3 3 种情况, 根据分步乘法原理知共有C 4 2 A 3 3 =36; 故...
...将4个不同的小球放入3个不同的盒子,其中每个盒子都不放空的放法有...
解答:按照要求,最后有1个盒子有两个球,另外两个盒子1个球。∴ 先将4个球中的两个合成一个整体,有C(4,2)=6种,然后将3组球放入3个不同的盒子,是排列问题,有A(3,3)=6种,∴ 共有 6*6=36种放法。
四个不同的小球全部随意放入3个不同的盒子里,使每个盒子都不空的放法...
即4个小球不同,分成3组的不同分法为4个小球选2个,其它各1;或4个小球选1个,其它一个为空,一个为3个。(6+4=10为组合问题)盒子不同的排列方式为3*2=6(排列问题)二者乘积为总放法数。若每个盒子不能为空,则为6*6=36种
四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的...
法一:从四个中选三个应该是C43而不是A43 再从三个盒子中选一个放剩下的一个球C31 C43C31=36 法二:或者可以这么求,从四个球里面选两个放入其中的一个盒子:C42*C31=18 另外两个球放入剩下的两个盒子中:A22=2 求得36种
4个不同的球放在3个不同的盒子里,共有放法多少种 为什么
分类讨论2:有一个空盒 有两种情况 ①1和3分,有C(2,3)×A(2,2)×C(1,4)=24种 ②2和2分,有C(2,3)×A(2,2)×C(2,4)÷2=18种 分类讨论3,有两个空盒 共C(1,3)=3种 所以总共36+24+18+3=81种 看看参考资料吧,也是本人答的 参考资料:http:\/\/zhidao....
将4个不同颜色的小球全部放入不同标号的3个盒子中,可以有一个或者多个...
根据题意,每个小球有3种方法,共有3×3×3×3=34=81种放法,故选D.
将4个不同的小球放入3个不同的盒中,每个盒子至少放入一球,则不同方法...
第一步从4个球种选出2个组成复合元素共有C24种方法,再把3个元素(包含一个复合元素)放入3个不同的盒子中有A33种,根据分步计数原理放球的方法共有C24?A33=36种.故选B.
四个不同的小球全部放入三个不同的盒子中,使每个盒子都不空的方法为...
解答:相当于有两个球在一起。先将4个球的两个球看成一个整体,有C(4,2)种方法,这样就有3堆球,放入三个盒子,共有A(3,3)种方法 共有C(4,2)*A(3,3)=6*6=36种方法。
将4个不同的球放入3个不同的盒子,每个盒子都不空的方法有多少种?_百 ...
C3(1) × C4(2) ×2 = 3×6×2=36 种 先从3盒子选1个装2球的 ,再从4选2个装入,再就是2球2盒子2种装法
4个不同的球放入3个不同盒子,每个盒子都有球,多少种放法?要求过程_百 ...
先从四个球里面选三个出来放,那么就有4种选法,然后选出的三个球,放进不同的盒子里又有,P33,也就是6种方法.剩下的那个,放进三个中的某一个盒子,又有3种选择.所以应该总共是4*6*3=72种放法