答案解释是先用捆绑法C42=6再全排列A33 结果是36.但是我的想法是用挡板法,是四个球中间三个空是C32 再A33 结果是18种。那如果是4个相同的小球呢?直接C32就可以么?请高手分析下 挡板法的用法,谢谢啦!
...将4个不同的小球放入3个不同的盒子,其中每个盒子都不放空的放法有...
解答:按照要求,最后有1个盒子有两个球,另外两个盒子1个球。∴ 先将4个球中的两个合成一个整体,有C(4,2)=6种,然后将3组球放入3个不同的盒子,是排列问题,有A(3,3)=6种,∴ 共有 6*6=36种放法。
四个不同的小球全部放入三个不同的盒子中,使每个盒子都不空的方法...
共有C(4,2)*A(3,3)=6*6=36种方法。
四个不同的小球全部随意放入3个不同的盒子里,使每个盒子都不空的放法...
盒子不同的排列方式为3*2=6(排列问题)二者乘积为总放法数。若每个盒子不能为空,则为6*6=36种
4个不同的小球放入3个不同的盒子中(盒子不允许为空),一共有___种不同...
由题意知四个不同的小球全部随意放入三个不同的盒子中,则必须有1个盒子里放2个球,其余的三个盒子各放1个,首先要从4个球中选2个作为一个元素,有C42种结果,同其他的两个元素在三个位置全排列有A33种情况,根据分步乘法原理知共有C42A33=36;故答案为:36 ...
四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的...
法一:从四个中选三个应该是C43而不是A43 再从三个盒子中选一个放剩下的一个球C31 C43C31=36 法二:或者可以这么求,从四个球里面选两个放入其中的一个盒子:C42*C31=18 另外两个球放入剩下的两个盒子中:A22=2 求得36种
...放入三个不同的盒子中,使每个盒子都不空的放法种数为
4个求,3个盒子,且都为空 则有一个盒子是有2个球的。就是四选二:C(4)2=6,再这种情况对三个盒子都可能所以再乘3 再剩下2个盒子分别一个 就是2种情况了 所以一共6*3*2=36
4个不同的小球放入3个有编号的盒子,每个盒子至少放一个小球,有___种...
根据题意,分2步进行分析: ①、把4个小球分成3组,其中一组2只,剩余2组各1只,分组方法有C 4 2 =6种. ②、再把这3组小球全排列,对应3个盒子,有A 3 3 =6种. 再根据分步计数原理可得所有的不同方法共有6×6=36种, 故答案为:36.
4个不同的小球放进3个不同的盒子里,恰好有一个空盒子,多少种放法?
A42 * 3 = 36 4个不同的小球放入两个不同的盒子中,实际上有三个盒子,而三个盒子中任意一个可以为空,所以有这个表达式。答案是 12 * 3 = 36
4个不同的小球放进3个不同的盒子里,恰好有一个空盒子,多少种方法?
第一步:在四个盒子中任选一个做为空盒子,由C(4,1)=4种不同的选择;第二步:将3个盒子排成一排,4个小球任意选3个分别放进3个盒子中,有A(4,3)=4*3*2=24种不同的方法;第三步:在3个盒子中任选1个放进最后1个小球,共3种方法。因此本问题共有4*24*3=288种不同的方法。
将4个不同的小球放入3个不同的盒中,每个盒子至少放入一球,则不同方法...
第一步从4个球种选出2个组成复合元素共有C24种方法,再把3个元素(包含一个复合元素)放入3个不同的盒子中有A33种,根据分步计数原理放球的方法共有C24?A33=36种.故选B.