10个相同的小球放入编号为1、2、3的三个盒子中放入小球数不少于盒子的编号数,则有多少种不同的放法

如题所述

原题等价于将7个球放入3个盒子中,每隔盒子中至少有一个球,然后再在第二个盒子中加1个球,在第三个盒子中加2个球。
如此,可以用“插板法”:将7个球排成一列,中间6个空隙出插上2两块“板”,就把球分成3堆,从而获得一种分法。所以一共有C(2,6)=15种方法。#

参考资料:http://zhidao.baidu.com/question/291703447.html

温馨提示:内容为网友见解,仅供参考
第1个回答  2011-07-31
15种
先在1、2、3个盒子里分别放入1、2、3个小球,这样就保证了放入小球数不少于盒子的编号数;
再把剩余的四个小球放入三个盒子里,就可以算出来啦
第2个回答  2011-07-31
球数不小于盒号,即1、2、3号瓶至少装1、2、3个球,先把1号瓶装1球,2号瓶装两球,3号瓶装3个球
还剩4个球,每个球有三个位置可放
三的四次方
81种

10个相同的小球,放入编号为1,2,3的三个盒子里,要求每个盒子的球数不...
根据题意,先在编号为2、3的三个盒子中分别放入1、2个小球,编号为1的盒子里不放;再将剩下的7个小球放入3个盒子里,每个盒子里至少一个;共:C26=6×52×1=15(种);即可得符合题目要求的放法共15种.故答案为:15.或另一种解法:一号箱的放法有五种:1,2,3,4,5.分别谈论,当...

...把10个相同小球放入编号为1 ,2 ,3的三个不同盒子,使盒子里的小球个...
故答案为15

将10个相同的小球放入编号为1、2、3的盒子里,若每个盒子里的球的个数...
错先在编号为1,2,3的盒子里分别放入1,2,3个小球,则剩余的小球可以任意放.有3 4 种放法. 剖析:解题过程中,先把盒子里放上小球是可以的,这是注意到小球都是相同的这一特点,但是接下来则忽视了这一特点,从而导致错误.正确解法是:先在编号为1,2,3的盒子里分别放入1,2,3个小球,...

把10个相同的球放入编号为1,2,3的三个盒子中,使得每个盒子中的球数...
2分别在1,2,3号盒子中的任意两个中放2个和1个,共3种情况;∴3+6+3+3=15种.故选B.

五年级奥数题:10个相同的小球,放入编号为1,2,3的三个盒子内,
首先说你的思路错在了两个地方。这个题的关键点在于,10个小球是相同,但是三个盒子是不同的,所以对于每种放法,其结果可以用一个有序的数组表示(a,b,c)。“不同放法”中的“不同”是指a或者b或者c取不同的值。比如,(a,b,c)=(2,3,5),只要三个盒子中的球数满足这样一个关系,那么...

将9个大小相同的小球放入编号为1,2,3的三个盒子中,要求每个盒子内的球...
根据题意,先在编号为2的盒子中依次放入1个小球,编号为3的盒子中依次放入2个小球,还剩余6个小球,只需将这6个小球放入3个小盒,每个小盒至少一个即可,分析可得,6个小球共5个空位,从中选2个,插入挡板即可,则有C52=10种不同的放法,故答案为10.

10个不同的球放入编号为1,2,3的三个盒子
2、每个盒子至少三个,可先从10个里边分三次取球,每次都是取3颗依次放入盒子,这一步有C(10,3)×C(7,3)×C(4,3)种,第二步从三个盒子中选一个盒子放入最后一个球,则放法一共有C(10,3)×C(7,3)×C(4,3)×C(3,1)种 3、先从10个里边分三次取球,每次分别取1、2、3...

10个不同的球放入编号为1,2,3的三个盒子
(1在上面,10在下面,表示10个选一个 下同)此时 放第二个盒子时 最少要放2个 设当放两个时 有 p(2,9)放第三个盒子时 最少要放三个 设当放三个时有 p(3,7)则可能性为 p(1,10)p(2,9)*p(3,7)当放第三个盒子放四个时 则有 p(4,7)可能性为 p(1,10)p(2,9)*p...

把20个相同的小球放入编号1.2.3的三个盒子,使得每个盒中的球数不少于...
原题等价于将17个球放入3个盒子中,每隔盒子中至少有一个球,然后再在第二个盒子中加1个球,在第三个盒子中加2个球。如此,可以用“插板法”:将17个球排成一列,中间16个空隙出插上2两块“板”,就把球分成3堆,从而获得一种分法。所以一共有C(2,16)=120种方法。

...编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不小于其编号数...
解:此例可转化为不同的两类元素,即小球和隔板的排列问题,向1,2,3号三个盒子中分别装入1,2,3个球后还剩下14个球,然后再将这14个球装入1,2,3号三个盒子中的某几个(不再要求每个盒子必须有球),故可从这14个球和2个隔板所占的16个位置中选出2个位置放隔板,剩下的位置放小球...

相似回答